Cell, Volume 188

Supplemental information

A deep learning strategy to identify

cell types across species

from high-density extracellular recordings

Maxime Beau, David J. Herzfeld, Francisco Naveros, Marie E. Hemelt, Federico D'Agostino, Marlies Oostland, Alvaro Sánchez-López, Young Yoon Chung, Michael Maibach, Stephen Kyranakis, Hannah N. Stabb, M. Gabriela Martínez Lopera, Agoston Lajko, Marie Zedler, Shogo Ohmae, Nathan J. Hall, Beverley A. Clark, Dana Cohen, Stephen G. Lisberger, Dimitar Kostadinov, Court Hull, Michael Häusser, and Javier F. Medina

Supplemental Tables

	Purkinje cell simple spikes (n=69)	Purkinje cell complex spikes (n=58)	Molecular layer interneurons (n=27)	Golgi cells (n=18)	Mossy fibers (n=30)
Mean firing rate (spikes/s)	104.9±38.1	1.2±0.3	27.3±22.5	18.9±12.0	17.3±15.6
CV	0.45±0.17	0.95±0.3	0.81±0.23	0.76±0.37	1.6±0.9
CV2	0.36±0.09	0.88±0.08	0.69±0.18	0.6±+0.15	0.92±0.28
ISI std (ms)	4.9±2.6	905.9±470.5	106.7±183.8	62.4±51.0	172.0±172.8
Bursting (95 th percentile of instantaneous firing rate) (spikes/s)	201.3±68.1	9.7±1.9	142.3±99.3	105.6±92.2	507.9±328.4
Waveform peak-to-trough (ms)	0.27±0.08	0.36±0.27	0.42±0.12	0.37±0.09	0.16±0.09
Peak-to-trough ratio	0.39±0.17	0.72±0.39	0.37±0.22	0.61±0.22	0.48±0.26
Recovery constant (ms)	0.45±0.27	0.40±0.41	0.47±0.2	0.28±0.09	0.24±0.32
% spatial decay @ 24µm	52.6±15.4	49.7±17.9	54.3±16.9	40.7±16.0	61.9±15.9

Table S1 (related to Figure 4). Mean and standard deviation of commonly reported metrics used to characterize waveform and firing statistics, displayed for the cell types in the ground-truth library. The table shows the extent of overlap across cell types for statistical measures of firing and waveform properties, to allow comparison with measures reported in previous studies^{1–6}. For each unit, we measured metrics related to firing properties, including the mean firing rate, coefficient of variation (CV), mean CV2⁷, and the standard deviation of the interspike interval distribution. We devised a metric to measure the maximal instantaneous firing rate for each unit while remaining robust to noise by computing the instantaneous firing rate as the inverse of adjacent interspike intervals and reporting the 95th percentile of the resulting distribution. We also report metrics commonly used to summarize waveform properties, including the peak-to-trough width⁸, peak-to-trough ratio^{8,9} and recovery constant, also called "end-slope"⁹. Finally, we computed a metric to summarize the spatial decay of each unit's electrical footprint across channels of the Neuropixels by computing the percentage of the peak-to-peak amplitude

measured on each unit's largest channel that was lost on adjacent diagonal contacts, 24 µm away.

	Purkinje cell simple spikes	Purkinje cell complex spikes	Molecular layer interneurons	Golgi cells	Mossy fibers
Mouse lateral cerebellum (n=1291)	11%	39%	11%	9%	30%
Monkey floccular complex (n=527)	23%	26%	5%	37%	9%
Ground-truth library (n=202)	34%	29%	13%	9%	15%

Table S2 (related to Figures 4 and 5): Distribution of cell types across the samples from mice, monkeys, and in the ground-truth library. We estimated the distribution of cell-types in our recordings by applying our fully-trained deep learning classifier (see Figure 5) to two large, unlabeled samples of well-isolated neurons from the lateral cerebellar cortex (Crus I, Crus II, paramedian lobule, paraflocculus, and lateral simplex) of mice and the floccular complex of monkeys. The relative proportion of cell types differ across samples, probably because of the properties of the Neuropixels used in mice versus the s-Probes used in monkeys as well as genuine differences in different regions of the cerebellum. They also do not mirror the enrichment of recordings from Purkinje cells in our ground-truth library (Figure 4C) because Purkinje cells are larger and easier to isolate than many other cerebellar neurons.

															obera operation									
	Mar.	Dall Be	Franci Au	Marin ON CON	Fer F Her OS ,	Verico D'A	4/42 0000 1900 100 1	Voun Sandry	Mich Ogn Con	Stent Nain Chung	Han Hyrach	M. C. N. S. Alakis	Ages 1900	Marin Laiks	Shocedler Charles	Nath Ohnas	Ben Han	Dar Py	Ster Cole	Din: 0,	Con tox cisber	Mich Hulls adjours	Javie Häus	"Per F "SSer 2
Conceptualization	•	•															•	•	•	•	•	•	•	
Mouse data collection	٠	•		•		•	•	•	•		٠			٠	٠					•	•			
Mouse data analysis	•		•	•	•	•	•			•		•												
Monkey data collection		•																						
Monkey data analysis		•														•								
Classifier design	٠	•			•																			
Software development	•	•	•		•							•	•											
Manuscript, led writing																			•					
Manuscript, major contribution to figures	•	•			•															•			•	
Manuscript, major contribution to writing	٠	•																	•	•	•	•	•	
Manuscript, contribution to figures and/or writing	•	•	•	•	•	•	•											•	•	•	•	•	•	
Supervision	٠														٠		•	•	•	•	•	•	•	
Funding																	•		•		•	•	•	

Table S3: Author contributions. Significant contributions are denoted with a dot (•).¹These authors contributed equally as first author.²These authors contributed equally as senior author.

Supplemental References

- 1. Van Dijck, G., Hulle, M.M.V., Heiney, S.A., Blazquez, P.M., Meng, H., Angelaki, D.E., Arenz, A., Margrie, T.W., Mostofi, A., Edgley, S., et al. (2013). Probabilistic Identification of Cerebellar Cortical Neurones across Species. PLOS One *8*, e57669.
- 2. Barmack, N.H., and Yakhnitsa, V. (2008). Functions of Interneurons in Mouse Cerebellum. J. Neurosci. 28, 1140–1152.
- 3. Ruigrok, T.J.H., Hensbroek, R.A., and Simpson, J.I. (2011). Spontaneous Activity Signatures of Morphologically Identified Interneurons in the Vestibulocerebellum. J. Neurosci. *31*, 712–724.
- 4. Hensbroek, R.A., Belton, T., van Beugen, B.J., Maruta, J., Ruigrok, T.J.H., and Simpson, J.I. (2014). Identifying Purkinje cells using only their spontaneous simple spike activity. J. Neurosci. Methods 232, 173–180.
- 5. Prsa, M., Dash, S., Catz, N., Dicke, P.W., and Thier, P. (2009). Characteristics of Responses of Golgi Cells and Mossy Fibers to Eye Saccades and Saccadic Adaptation Recorded from the Posterior Vermis of the Cerebellum. J. Neurosci. *29*, 250–262.
- 6. Holtzman, T., Rajapaksa, T., Mostofi, A., and Edgley, S.A. (2006). Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J. Physiol. *574*, 491–507.
- 7. Shinomoto, S., Shima, K., and Tanji, J. (2003). Differences in spiking patterns among cortical neurons. Neural Comput. *15*, 2823–2842.
- 8. Petersen, P.C., Siegle, J.H., Steinmetz, N.A., Mahallati, S., and Buzsáki, G. (2021). CellExplorer: A framework for visualizing and characterizing single neurons. Neuron *109*, 3594-3608.e2.
- 9. Niell, C.M., and Stryker, M.P. (2008). Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536.