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SUMMARY

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire
brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular
recordings in awake animals and reveal the computational roles of neurons with distinct functional, molec-
ular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a
testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, mo-
lecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep learning classifier
that predicts cell types with greater than 95% accuracy based on the waveform, discharge statistics, and
layer of the recorded neuron. The classifier’s predictions agree with expert classification on recordings using
different probes, in different laboratories, from functionally distinct cerebellar regions, and across species.
Our classifier extends the power of modern dynamical systems analyses by revealing the unique contribu-
tions of simultaneously recorded cell types during behavior.

INTRODUCTION

The nervous system comprises many cell types defined by

their molecular, anatomical, morphological, and physiological

properties.1–6 Powerful modern molecular techniques have re-

vealed multiple subtypes even within known anatomical cell

classes.7–13 Identification of cell type at multiple levels will be

crucial to understand how the brain works and to develop selec-

tive, targeted therapeutics for brain dysfunction. Therefore, it is

crucial to develop strategies to determine cell type and to

cross-reference cell type across levels of analysis.3,5,6,12,14,15

Extracellular recording of the action potentials of neurons dur-

ing behavior is an essential approach for understanding how

neural circuits generate behavior. Thus, it is necessary to

achieve reliable cell-type identification based on the features of

extracellular recordings during specific, quantified behaviors.

Specifically, simultaneous large-scale electrophysiological re-

cordings using high-density multi-contact recording probes16,17

coupled with cell-type identification in vivo would facilitate char-

acterization of circuit-level processing that drives behavior.

Identification of cell type is a particularly difficult challenge for

extracellular recording technologies that deliver only spike

waveforms and firing statistics. Previous attempts at extracel-

lular neuron identification by measuring specific features of the

recordings have not proven robust across laboratories.18,19

While optogenetic approaches to cell-type identification20–23

ll

Cell 188, 1–17, April 17, 2025 ª 2025 Published by Elsevier Inc. 1

Please cite this article in press as: Beau et al., A deep learning strategy to identify cell types across species from high-density extracellular
recordings, Cell (2025), https://doi.org/10.1016/j.cell.2025.01.041

mailto:jfmedina@bcm.edu
https://doi.org/10.1016/j.cell.2025.01.041


offer a viable solution for the creation of a library of extracellular

properties, direct optogenetic identification cannot be deployed

at adequate scale: optogenetic identification currently is routine

only in mice and can be used to target only one or two cell types

at a time in a given preparation.24 In general, the challenges of

cell-type identification from extracellular recordings cannot be

resolved by revealing the transcriptional or anatomical proper-

ties of neurons25 because the requisite technologies are not

compatible with electrode recordings from multiple cell types

simultaneously in awake animals.

Our goal was to enable cell-type identification solely from

extracellular recordings in awake animals by developing a strat-

egy that could scale across labs, probes, and species. We chose

to pioneer the strategy in the cerebellar cortex. The cerebellum

has a crystalline architecture with well-defined neuronal connec-

tivity and a small number of anatomically defined cell types1,26

that are evolutionarily conserved,27,28 allowing direct compari-

son of recordings across species. It has a range of neuron sizes

from among the smallest and most densely packed (granule

cells) to the largest (Purkinje cells) in the brain, allowing us to

test the resolution of our recording approaches. It has many

spontaneously firing neurons,29–31 some with high spontaneous

rates, allowing rigorous characterization of their electrophysio-

logical properties. Genetically defined mouse Cre lines are avail-

able for all major cell types in the cerebellum,32–36 allowing us to

leverage optogenetic strategies for ground-truth cell-type identi-

fication.20 Finally, the cerebellum has a long history of neuro-

physiological recording,37 allowing us to reference our measure-

ments and automated cell-type classifications against hard-won

human expertise. Strategies to solve the challenges of cell-type

identification in such a testbed should provide a roadmap for

application to other structures, including the cerebral cortex,

the hippocampus, and the basal ganglia.

We accomplished our goal by creating a ground-truth library of

identified cerebellar cell types recorded in awake mice and

developing a semi-supervised deep learning classifier that accu-

rately predicts cell type for the ground-truth library based on the

waveform, discharge statistics, and anatomical layer of the

recording. The classifier identifies cell type with high confidence

in a high fraction of expert-labeled cerebellar recordings from

two different laboratories in behaving mice and monkeys.

Dynamical systems analysis enables biological insights by

revealing the distinct temporal dynamics of simultaneously re-

corded populations of identified cell types during complex be-

haviors in mice and monkeys.

RESULTS

General approach
We deployed the multi-step strategy outlined in Figure 1. (1) We

created a ground-truth library of cell types based on optogenetic

activation of genetically defined neurons using synaptic

blockade to confirm that neurons were activated directly. (2)

We identified features of electrophysiological recordings that

could be used to train a semi-supervised deep learning classifier

on the ground-truth library. (3) We tested the generality of the

classifier by predicting cell types in independent datasets of

expert-classified recordings from mice and monkeys.

Multi-contact probe recordings and data curation
In the cerebellar cortex, morphologically distinct cell types reside

in different layers (Figure 2A). Purkinje cells comprise a mono-

layer and extend their planar dendrites through the molecular

layer. Molecular layer interneurons (MLIs) reside across the

extent of the molecular layer and include basket cells that inner-

vate the Purkinje cell’s soma and stellate cells that innervate the

Purkinje cell’s dendrites. The granule cell layer includes mossy

fiber terminals, Golgi cells, and granule cells. Other, less-com-

mon cell types exist in the different layers,26 but we focused on

the primary cell types of the cerebellar circuit (Figure 2A) due

to the availability of Cre lines for expression of opsins in those

cell types.

Purkinje cells allow ground-truth identification from their extra-

cellular electrical signature alone (Figure 2B, left). They have

‘‘simple spikes’’ that fire at high rates and ‘‘complex spikes,’’

driven by their climbing fiber input,38–40 that occur at �1 Hz

Figure 1. A strategy for cell-type identification from extracellular recordings in neural circuits

See details in main text.
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Figure 2. Curation of Neuropixels recordings in the mouse cerebellar cortex

(A) Schematic diagram of the canonical cerebellar circuit.

(B) Example simple spikes (light blue) and complex spikes (black) in a Purkinje cell. Cross-correlogram on the right documents a complex-spike-triggered pause

in simple spikes.

(C) Example recordings from 20 channels of a Neuropixels probe. Traces highlight a single unit recorded in the molecular layer (magenta), a Purkinje cell’s simple

spikes (blue), the same Purkinje cell’s complex spikes (black), and a unit recorded in the granule cell layer (green).

(D) Comparison of example histology labeled with DiI and Hoechst with the layers predicted by Phyllum from the electrical recordings. Different colors on the

Neuropixels schematic denote Phyllum-predicted layer.

(E) Typical autocorrelograms for two units with very few refractory period violations (RPVs).

(F) Analysis of quality of isolation as a function of time during a recording session. From top to bottom, graphs show the percentage of RPVs, the estimated

percentage of missed spikes, and spike amplitude. Horizontal dashed lines show thresholds for acceptance. Gray regions show periods that were rejected from

(legend continued on next page)
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and trigger a characteristic 10–50 ms pause in simple spikes.41

Thus, Purkinje cells can be admitted into the ground-truth library

if they show a pause in a complex-spike-triggered histogram of

simple-spike firing (Figure 2B, right).

Recordings with Neuropixels probes detect neural activity on

many of the 384 channels, and spike-sorting yields many units.

The magenta waveforms in Figure 2C arose from a neuron in

the molecular layer that would be a candidate to be a MLI.

The green waveforms came from a neuron recorded in the

granule cell layer that could be a mossy fiber, a Golgi cell, or

a granule cell. The blue and black waveforms were the simple

and complex spikes of an identified Purkinje cell. We highlight

the largest-amplitude units in the recordings shown in

Figures 2B and 2C, but we also sorted the smaller amplitude

units and subjected them to our analysis and curation pipeline,

detailed below.

The first step in our analysis pipeline was the objective identi-

fication of the layer of each channel. The typical recording trajec-

tory documented with DiI staining in Figure 2D crossed 3 molec-

ular layers, 5 Purkinje cell layers, and 3 granule cell layers. We

assigned each channel to a layer using Phyllum, a Phy plugin

that analyzes recordings across the channels on a probe to infer

the layer recorded by each channel (see STAR Methods). The

layer structure inferred by Phyllum agreed well with histological

layer identification based on correspondence between the DiI

track of the probe and nuclear staining (Figure 2D). We validated

Phyllum across 21 histologically confirmed penetrations, and its

conclusions agreed with the histology at 99%, 95%, and 98% of

776, 367, and 1,140 recording sites, respectively, in the molecu-

lar, Purkinje cell, and granule cell layers.

We next ensured that each unit we admitted for further anal-

ysis was a well-isolated single neuron. We manually curated

the output from Kilosort2 with Phy and performed automated

quality checks to ensure isolation. We strove to ensure that we

neither missed many spikes from the neuron under study nor

included noise or spikes from neighboring neurons.

d We analyzed the assumed 0.8 ms refractory period from

each isolated neuron to assess the level of potential

contamination from other neurons or noise.42 The example

autocorrelograms in Figure 2E have few refractory period

violations and, respectively, represent the mean (0.25%)

and median (0.01%) in our dataset. We rejected any units

with greater than 5% refractory period violations (Figure 2F,

red symbols and histogram), and almost all accepted neu-

rons had fewer than 1% refractory period violations (Fig-

ure 2H). In combination with themean firing rate, refractory

period violations can be used to estimate the fraction of a

neuron’s spikes that may be contaminated, an analysis we

provide later in the paper, once we have identified cell

types.

d We estimated the number of missed spikes by fitting the

spike amplitude distribution with a Gaussian function and

quantifying the fraction of the area under the curve that

was clipped at noise threshold43,44 (Figure 2F). In Figure 2F,

we excluded the first �150s of the recording because we

estimated that more than 5% of spikes were missed

(blue symbols and histogram). Among the recordings we

accepted, the percentage of missed spikes averaged

0.26%, and almost all neurons showed fewer than 1%

missed spikes (Figure 2I).

As extracellular signals are important inputs to our classifier,

stringent criteria are essential to ensure reliable cell-type iden-

tification. In addition to the quality criteria described above,

we took steps to ensure uniform and appropriate preprocess-

ing of extracellular data (Figure S1) and optimize temporal

alignment of individual action potentials (see STAR Methods).

The requirement for a few violations of the refractory period

and small numbers of missed spikes ensured that the units

we accepted had high signal-to-noise ratios. The mean

signal-to-noise ratio on the channel with the largest unit po-

tential was 9.3 in our accepted sample (almost identical to

that of the example recording in Figure 2G). Over 90% of

the neurons had signal-to-noise ratios larger than 4 (Figure 2J).

Our criteria were designed to explicitly exclude any neural

units with action potentials that might come from a different

neuron, be noise, or represent the superposition of two or

more neurons.

Combination of optogenetics and pharmacology for
ground-truth cell-type identification
To allow cell-type identification by photostimulation,20 we intro-

duced Neuropixels probes into the cerebellum of mice express-

ing opsins (usually Channelrhodopsin-2, ChR2, with some use of

inhibitory opsins in GABAergic MLIs; see STARMethods) in spe-

cific cell types. We performed optogenetic stimulation in multiple

phases, including before, during, and after pharmacological

application of synaptic blockers (Figure 3A): baseline, control,

infusion, and blockade (details in STAR Methods).

We accepted neurons as activated directly by photostimula-

tion only if we had strong evidence that they were within the re-

gion of synaptic blockade and they continued to have reliable

and short-latency responses to light (response latency <10 ms,

Figure S2A). By contrast, we excluded neurons when ground

truth could not be established, either because they had a long la-

tency response to optogenetic stimulation (R10 ms), they lost

their response in the presence of synaptic blockers, or we could

analysis. Symbol color indicates spikes that came from intervals that had too many missed spikes (blue), acceptable isolation (green), and too many RPVs (red).

Marginal histograms on the right show the distribution of spike amplitudes to document clipping at the noise level in the blue histogram that would be cause for

rejection of a time interval.

(G) Example recording traces and spatial footprint of a representative recording with a signal-to-noise ratio (SNR) of 9.33, with the waveforms numbered ac-

cording to their channel. Asterisk (*) denotes the channel with the largest peak-to-trough amplitude, used to compute the SNR.

(H) Distribution of the percentage of RPVs across neurons accepted to the ground-truth library.

(I) Distribution of estimates of the percentage of spikes that were missed across neurons accepted to the ground-truth library.

(J) Distribution of SNRs on the channel with the largest-amplitude waveform across neurons accepted into the ground-truth library.

See also Figure S1.
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not confirm that synaptic blockade was effective at the location

the neuron was recorded. Synaptic blockade at a given

recording depth was deemed effective only if we could record

neurons at or below that depth showing at least one of the 3

signs illustrated in the top row of Figure 3B:

1. Loss during the blockade phase of responses to optoge-

netic stimulation present in the control phase (Figure 3B,

top row, left).

2. Putative mossy fibers with loss of negative afterwaves in

the blockade phase (Figure 3B, top row, middle). Prior ev-

idence showed that the negative afterwave is a postsyn-

aptic response of granule cells.45,46

3. Substantial changes in a neuron’s autocorrelogram or co-

efficient of variation (CV), usually due to an increase in reg-

ularity caused by a shift from synaptically and intrinsically

driven spiking to purely intrinsically generated spiking29

(Figure 3B, top row, right).

A B

C D E F

G

Figure 3. Strategy for ground-truth identification of cell type

(A) Schematic showing the phases in experiments to test for optogenetic activation in the presence of synaptic blockade.

(B) Examples from 6 different units of the signs used to determine the region of effective synaptic blockade. From left to right, the example units in each row

demonstrate the effect of blockade on the response to optogenetic stimulation, the negative afterwave of a mossy fiber waveform, and the discharge statistics

defined by autocorrelograms and the value of CV.

(C) Example of how we determined whether recordings were within the region of synaptic blockade. Along the Neuropixels probe, the top histograms on the right

show sites that were within the region of blockade because units recorded there lost their responses to optogenetic stimulation, and the lower waveforms show

mossy fibers that were below the region of blockade because they retained their negative afterwaves.

(D) Raster and peri-stimulus time histogram for a neuron that lost its response to optogenetic stimulation with synaptic blockade. Black versus orange histograms

show responses before versus during synaptic blockade. Blue shading indicates the time of photostimulation.

(E) Same as (D), except for a neuron that retained its response to optogenetic stimulation during synaptic blockade.

(F) Fast timescale records showing the short-latency responses to optogenetic stimulation of the neuron in E in both the control phase and the blockade phase.

(G) Spatial footprint of the neuron in (D). Black, orange, and blue traces show waveforms recorded during the baseline period, synaptic blockade without op-

togenetic stimulation, and synaptic blockade with optogenetic stimulation. The waveforms are spaced according to the relative locations of their contacts, and

the two double-headed arrows indicate the horizontal and vertical spacing of the contacts on the Neuropixels probes.

See also Figures S2 and S3.
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To illustrate our strategy, we present one example experi-

ment in a transgenic mouse line that expressed ChR2 in mossy

fibers35,47 (Thy1-ChR2 line 18). Figure 3C shows the probe

location of six neurons that were good candidates for

ground-truth mossy fibers because they were photoactivated

with a short latency in the control phase. We excluded three

of the six neurons from the ground-truth library because they

lost their responses to optogenetic stimulation during the

blockade phase (Figures 3C and 3D). Two of the neurons had

putative mossy fiber waveforms (Figure 3C), but we also

excluded them because synaptic blockade could not be

confirmed at their location: they retained the negative afterwave

during the blockade phase. Only one of the six neurons satis-

fied all the requirements necessary to be classified as a

ground-truth mossy fiber: it responded with short latency to op-

togenetic stimulation in both the control and blockade phases

(Figures 3E and 3F), and it was located in a region of effective

synaptic blockade, as confirmed by the loss of photostimula-

tion responses during the blockade phase in two neurons

that were recorded at the same location or just below (Fig-

ure 3C). The extracellular waveforms of this neuron were con-

stant across the entire experiment (Figure 3G), indicating a sta-

ble recording. We present a quantitative analysis of synaptic

blockade across all recordings in Figures S2B–S2F.

Some of the mouse lines we used were less specific than the

Thy1-ChR2 line in the example of Figures 3C–3G, a complication

that could lead to direct photoactivation of multiple cell types

andmisidentification of some of our recorded neurons. Figure S3

illustrates how we combined identification of the recording layer

based on Phyllum with optogenetic activation to establish cell

type unambiguously, even in the GlyT2-Cre line that we chose

to label Golgi cells33 where the problem of off-target expression

was most pronounced.

The ground-truth library
Across 188 Neuropixels recordings in two laboratories, we re-

corded a total of 3,652 neurons that survived the spike-sorting

and curation pipeline (Figure 4A).Most failed our criteria for inclu-

sion in the ground-truth library (details in figure legend): only 97

retained responses in the presence of synaptic blockade (e.g.,

Figure 3E, fast timebase records in Figure 3F; latency distribu-

tions in Figure S2A). An additional 28 neurons lost their re-

sponses during synaptic blockade and therefore were driven

with short latencies (<10 ms) by indirect, synaptic activation

(e.g., Figure 3B, top: 5 ms, both neurons in Figures 3C: 3 ms

and 3D: 2 ms; latency distributions in Figure S2A). To the 97

directly activated neurons, we added the simple and complex

spikes of 62 Purkinje cells identified by a complex-spike-trig-

gered pause in simple spikes and removed 5 units that failed

final objective quality checks and 14 with ambiguous layer

assignment.

The neurons in the ground-truth library (right side of Figure 4A)

all were well isolated. They had more than 95% uncontaminated

spikes (Figure 4B), and almost all had close to 100% by a metric

detailed in the STAR Methods.48 For comparison with previous

reports,19,49–53 Table S1 reports the electrophysiological proper-

ties of different cell types in our ground-truth library using a range

of metrics.

The proportion of units in the ground-truth library is skewed to-

ward Purkinje cells (Figure 4C), and we compare that distribution

with better estimates of recording probability in Table S2. We

had very limited success in recording from granule cells even

though we made 82 recordings in mice with opsins expressed

in granule cells (see STAR Methods). We did record multiple

possible granule cell units with activity that was responsive to

photostimulation in the region of confirmed synaptic blockade,

but nearly all units failed one ormore of our criteria for good isola-

tion. After curation, we retained 3 units from 82 recordings (0.04

granule cells per recording). Our sample is too small to include

them in the classifier we will develop next. A combination of fac-

tors may contribute to the inability to record regularly from

granule cells: their comparatively small size,54,55 the spatially

restricted closed-field of their extracellular potential, and the

low electrode impedance49 of Neuropixels16 (150 kOhms).

Armed with a ground-truth dataset, we next developed an ac-

curate classification method based on consistent differences in

electrophysiological features across cell types.56 We used both

waveform19,57,58 and discharge statistics50–52 as features for

cell-type classification.

Waveform

Patch-clamp recordings in vitro confirmed our expectation that

the different biophysical properties and morphology of different

cell types would lead to different waveforms57–60 (Figure S4).

Yet, normalized waveforms have much more variable shapes

in extracellular recordings in vivo (Figure 4D) than in patch-clamp

recordings in vitro (Figure S4C). We attribute the higher variation

in waveforms in extracellular recordings to the fact that the

in vitro recordings are made under highly uniform conditions

with the electrode in direct contact with the cell membrane. By

contrast, extracellular recordings in vivo vary in distance from

the recording contact to the neuron, the orientation of the electric

field relative to that of the probe, and background noise. Further,

the shapes of the waveforms were very different in vitro versus

in vivo. Thus, a cell-type classifier trained on the waveforms re-

corded in vitro was unable to classify neurons in the in vivo

ground-truth library (Figure S4F), meaning that we could not

have supplemented our ground-truth library with waveforms re-

corded in vitro.

Discharge statistics

It is common for different cell types to have different

discharge statistics throughout the brain.61,62 In the ground-

truth library, discharge statistics estimated by autocorrelo-

grams varied across cell types (Figure 4E). We did not include

discharge statistics of neurons recorded in anesthetized ani-

mals or in vitro because they are not representative of the

awake state.19,63

Cell-type identification from a semi-supervised deep
learning classifier
Figure 4F and Table S1 reveal that it is difficult to guess which

specific measures of waveform and firing statistics would be

most informative to successfully distinguish cell types in awake

animals. Instead, raw data (1) contain richer information, (2) pro-

vide unbiased inputs for cell-type identification, and (3) are

likely to generalize across regions, tasks, and species. Further,

we used ‘‘three-dimensional autocorrelograms’’ (3D-ACGs,
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Figure 4. Selection criteria and properties of the ground-truth library of cerebellar cell types

(A) Curation process to create the ground-truth library, including the numbers that were retained or deleted at each stage of the curation.

(B) Distribution of the estimates of the % of spikes that actually belong to a given neuron, segregated according to color by cell type. See STAR Methods for

computation of% true spikes. Abbreviations are PCSS, Purkinje cell simple spikes; PCCS, Purkinje cell complex spikes; MLIs, molecular layer interneurons; GoCs,

Golgi cells; MFs, mossy fibers; and GrCs, granule cells.

(C) Histogram showing the number of ground-truth units of each cell type normalized for the number of recordings. Abbreviations as in (B).

(D) Superimposed waveforms for each cell type in the ground-truth library. Abbreviations as in (B). The bold traces indicate the neurons in example 3D-ACGs in

Figure S7C. Waveform amplitudes are normalized and flipped to ensure the largest peak is negative. Note that flipping causes some mossy fibers (MFs) to

possess a negative afterwave that is a positive deflection (as in Figure 3B). OtherMFs do not show a negative afterwave at all, probably because of variability in the

relative location of the probe contact and the MF. In general, the negative afterwave appeared on only one contact, as might be expected given that the negative

afterwave is thought to reflect the postsynaptic granule cell field potential and therefore should occur only on a channel more proximal to the glomerulus. Also

note the two distinct waveforms for molecular layer interneurons.

(E) Same as (D), but showing autocorrelograms of ground-truth neurons.

(F) Failure of traditional measurements of waveform or discharge statistics to differentiate cell types. Each symbol shows Z scored values of different features

from a single neuron, and different colors indicate different cell types, per the key at the bottom of the plot. Z scores were computed separately for each feature

but across cell types within each feature. Abbreviations as in (B).

(G) 2D-ACGs without regard for firing rate (top) and with spikes segregated according to instantaneous firing rate (bottom). The 2D-ACG (top graph) created

without regard for firing rate has multiple shoulders at irregular intervals, whereas the 3 ACGs created for different mean firing rates (bottom graph) are more

regular.

(H) 3D-ACG created from the 2D-ACGs in G to normalize for variations in firing rate. Arrows show the destination of each 2D-ACG. The 3D-ACG plots 10 rows that

contain 2D-ACGs for 10 different deciles of mean firing rate.

See also Figure S4.
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Figures 4G and 4H, details in figure legend) to quantify discharge

statistics in a way that normalizes for variations in firing rate

across a recording session and between species.

Our classifier (Figure 5A) consists of (1) a multi-headed,

normalized input layer that accepts the 10-dimensional outputs

from 2 pretrained variational autoencoders, one for the 3D-

ACGs and one for the full time course of the average optimally

aligned, amplitude-normalized waveform (see STAR Methods)

on the channel with the largest signal, along with a ‘‘one-hot’’

3-bit binary code of the unit’s cerebellar layer; (2) a hidden layer

that processes the 3 inputs; and (3) an output layer with one

output unit for each of the 5 cell types. The value of the output

units sums to 1 so that the output of the classifier is the probabil-

ity that a given set of inputs is from each of the 5 cell types. We

trained the weights in the classifier on the data in the ground-

truth library using gradient descent with leave-one-out cross-

validation.

Before optimizing the classifier, we trained the variational au-

toencoders on large samples of unlabeled data to reduce the

high dimensionality of thewaveforms and 3D-ACGs to 10 dimen-

sions. This and other steps (see Figure S5 and STAR Methods)

helped to mitigate overfitting, given the relatively small number

of training examples in the ground-truth library.

We evaluated not only the accuracy but also the ‘‘confidence’’

of the output from the classifier. For each leave-one-out sample

(n = 202 ground-truth units), we averaged the cell-type probabil-

ities across an ensemble of 10 models with random initial condi-

tions. In Figure 5B, the classifier repeatedly predicted that the

held-out unit was a Purkinje cell simple spike (average probabil-

ity 0.89). We quantified the classifier’s confidence with the ‘‘con-

fidence ratio,’’ computed as the ratio of the mean probability of

the most likely cell type to the mean probability of the second

most likely cell type. The percentage of ground-truth units that

could be classified decreased as a function of the confidence ra-

tio we chose as the confidence threshold (Figure 5C). Classifier

confidence was higher for Purkinje cell simple and complex

spikes and for mossy fibers compared to Golgi cells or MLIs.

We chose a confidence threshold of 2 in the remainder of our

analysis because it provided a compromise between classifying

as many neurons as possible and classifying them accurately.

The classifier showed high accuracy when applied to the units

in the ground-truth library. For each held-out neuron that ex-

ceeded the confidence threshold, we assigned it the cell type

with the highest average probability across the 10 classifier

runs. For 74% and 78% of ground-truth MLIs and Golgi cells,

confidence exceeded threshold, and the classifier assigned

A B

C D E F

Figure 5. Performance of a deep learning classifier on cell-type identification for the ground-truth library

(A) Classifier architecture. We trained the classifier with 10 different initializations for each of the 202 ground-truth units, symbolized by the 202 pages in the

classifier.

(B) Histograms showing the predictions of the classifier for 10 different initial conditions for one left-out neuron.

(C) Percentage of units classified as a function of the ratio we chose as a confidence threshold. Different colors show data for different ground-truth cell types.

(D) Confusion matrix showing the ground-truth cell type of a left-out testing unit as a function of the predictions of the classifier on that unit. The numbers in each

cell indicate the percentage of cell-type predictions for each ground-truth cell type. The rightmost column shows the percentage of ground-truth neurons that

received a confidence greater than 2, required for inclusion in the confusion matrix.

(E) Same as (D), but with confidence threshold = 0.

(F) Same as (D), but classifier trained on all optogenetically activated units without requiring synaptic blockade.

See also Figure S5 and S6.

ll

8 Cell 188, 1–17, April 17, 2025

Please cite this article in press as: Beau et al., A deep learning strategy to identify cell types across species from high-density extracellular
recordings, Cell (2025), https://doi.org/10.1016/j.cell.2025.01.041

Article



them correctly, i.e., values of 100% along the diagonal of the

confusion matrix (Figure 5D). More than 90% of mossy fibers,

Purkinje cell simple spikes, and complex spikes exceeded con-

fidence threshold, and nearly all were identified correctly. The

accuracy of the classifier degraded without a confidence

threshold but still exceeded 90% accuracy on all cell types (Fig-

ure 5E). The classifier performed less well without layer informa-

tion, mainly because layer information allowed it to better distin-

guish between Golgi cells and certain MLIs (Figure S6). Finally,

classifier performance degraded if we trained it on all optoge-

netically activated units without regard for successful synaptic

blockade (Figure 5F). Thus, it was important to include in the

ground-truth library only those cells that passed the requirement

of persistent optogenetic activation during confirmed synaptic

blockade.

Classifier validation of expert-labeled datasets
We next evaluated how well the ground-truth classifier general-

ized by predicting the cell type for a sample of expert-classi-

fied, non-ground-truth neurons recorded from mice and

monkeys.

Confidence is a particularly important metric for non-

ground-truth data. We took advantage of the 2020 versions

of our classifier that emerged from training 202 ground-truth

units by 10 instantiations of the classifier per unit. We aver-

aged the probabilities for each unit in the expert-classified da-

tasets across the 2020 classifiers and plotted the probability

assigned by the classifier as a function of the 5 possible cell

types (Figures 6A and 6B). Units appear in exactly one of 5

different plots, namely the one for cell type assigned by the

classifier as the highest probability. For example, the leftmost

graph reports probability versus cell type for all units that were

classified as most probable to be simple spikes of Purkinje

cells. The ground-truth classifier agreed with the human ex-

perts about the cell types of almost all units that were above

confidence threshold in both mice and monkeys (Figures 6C

and 6D). Further, it identified correctly the mouse and monkey

Purkinje cell simple spikes and complex spikes from record-

ings with a complex-spike-triggered pause in simple spikes

(Figure 6E).

Similar properties within cell types across species and
cerebellar regions
Three additional analyses indicate that the success of the

ground-truth classifier on the expert-classified data is based

on statistical similarity of the waveforms and firing statistics

of each cell type across datasets. First, the percentage of units

that were classified with confidence decreased similarly as a

function of the confidence threshold for the two samples of

expert-classified cells and the ground-truth dataset (Figure 6F,

thick gray and black traces versus colored traces). Second,

analysis of the output of the classifier’s autoencoders revealed

excellent agreement between the reduced-dimension repre-

sentation of expert-classified and ground-truth data (Figure 6G).

Third, inspection of the waveforms, 2D-ACGs, and 3D-ACGs

reveals impressive similarity across the ground-truth data, the

non-ground-truth mouse data, and the monkey recordings

(Figure S7).

Functional dissection of cerebellar circuits enabled by
cell-type identification
Different neuron types often exhibit distinct temporal response

dynamics during behavior. Our four labs recorded in four

different areas of the cerebellum known to be engaged during

our respective behaviors (Figure 7A): reward conditioning in the

lateral cerebellum of mice,64 eye blink conditioning in the deep-

est regions of paravermis lobules HV/HVI of mice,65,66 locomo-

tion in the simplex lobule of mice,67 and smooth pursuit eye

movements in the floccular complex of monkeys.68 Different

temporal responses across cell types appear in traditional trial-

averaged peri-stimulus time histograms of each cell type (Fig-

ure 7B). Most cell types showed relatively small variation across

individual units (error bands in Figure 7B), suggesting functional

homogeneity within cell types. At the same time, some cell types

in some areas demonstrated multiple functional discharge pat-

terns (e.g., Purkinje cells during eyeblink conditioning or MLIs

during smooth pursuit) (Figure 7C).

To reveal whether neural dynamics of different cell type-spe-

cific populations are distinguishable from each other, we per-

formed dimensionality reduction (Figure 7D) on the neural

state-space for trial-averaged data collected from a single

session’s recordings in the 3 mouse preparations and a

larger pseudo-population recorded across many sessions in

monkeys.69–74 We optimally aligned the principal components

computed separately for each cell-type population with those

for the full ‘‘cell-type-agnostic’’ population (see STAR Methods).

The trial-averaged neural trajectories of different cell types

showed statistically different dynamics from each other and

from the cell-type-agnostic population during reward condition-

ing and smooth pursuit but not eyeblink conditioning or locomo-

tion (Figure 7D). Two statistical analyses verified that any differ-

ence in the dynamics between cell types was not simply the

result of unequal or limited population sizes (Figure 7E) or gross

misidentification of cell types by the classifier (Figure 7F). Failure

of the trajectories of different cell types to diverge in two of the

behaviors we studied does not necessarily imply that all cell

types had the same dynamics. Rather, it could result from the di-

versity of dynamics within a cell type that matches or exceeds

the diversity across cell types, or from the existence of 2 or

more subgroups within each cell type. Further clustering within

cell types based on functional properties would be required to

disentangle functional subclasses. Together, the analyses in Fig-

ure 7 show how cell-type identification can provide biological

insight about how interactions among different cell types allow

neural circuits to control behavior.

DISCUSSION

Identification of cell type from in vivo extracellular recordings is a

fundamental requirement in systemsneuroscience.5,6,19,50,51,57,62,75–79

Our approach delivers a highly reliable ground-truth library of the

electrophysiological properties of cerebellar cell types in awake

mice based on identification through optogenetic stimulation in

the presence of synaptic blockers. The ground-truth library con-

sists of the neuron’s waveform, statistics of the spike train, and

the layer of the cerebellum where we recorded each unit. Our

semi-supervised deep learning classifier identifies the cell types

ll

Cell 188, 1–17, April 17, 2025 9

Please cite this article in press as: Beau et al., A deep learning strategy to identify cell types across species from high-density extracellular
recordings, Cell (2025), https://doi.org/10.1016/j.cell.2025.01.041

Article



A

B

C D E

F G

Figure 6. Ground-truth classifier performance on expert-classified datasets from mice and monkeys

(A) Probability assigned by the classifier as a function of cell type for expert-classified neurons from mice, with a separate graph for each cell type assigned the

highest probability by the classifier. From left to right, the highest-probability cell type was a Purkinje cell simple spike (PCss), Purkinje cell complex spike (PCcs),

molecular layer interneuron (MLI), Golgi cell (GoC), and mossy fiber (MF). Colored versus gray traces represent neurons that exceeded versus failed the con-

fidence threshold of 2.

(B) Same as (A), but for expert-classified neurons from monkey floccular complex.

(C) Correspondencematrix comparing the predictions of the classifier with expert-labeled cell type from recordings in mice. The numbers in each cell indicate the

percentage of expert-classified cell types on the y axis as a function of the cell type predicted by the classifier on the x axis. The rightmost column shows the

percentage of expert-classified neurons that received a confidence greater than 2 from the classifier.

(D) Same as (C), for expert-classified neurons from monkey floccular complex.

(E) Confusion matrices showing good agreement between the output from the classifier and the ground-truth identification in mice and monkeys of Purkinje cell

simple and complex spikes from the presence of a complex-spike-triggered pause in simple-spike firing.

(F) Comparison of percentage of classified units as a function of confidence threshold for 3 preparations. Faint-colored traces show the same curves for the

ground-truth library, copied from Figure 5C. Bold black and gray traces show results for the non-ground-truth units in mouse and monkey, respectively.

(G) Congruence of the output from the autoencoders for ground-truth versus expert-classified neurons across preparations. Each row corresponds to a single

ground-truth-identified neuron. Each column corresponds to a single classifier-identified neuron frommouse (left) or monkey (right). Colors at the intersections for

each row and column indicate the cosine similarity of the concatenated outputs from the autoencoders for waveform and autocorrelograms, where redder colors

indicate greater similarity.

See also Figure S7.
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B
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D

E

F

Figure 7. Neural population dynamics of different cell types

(A) Temporal profile of motor responses in four behavioral tasks in 4 different labs and 2 species. From left to right: licks per second when a reward is cued by a

solenoid click (mouse), and inset shows lick rate on an extended time scale; eyelid closure after eye blinks have been conditioned by pairing an LED and an air puff

(mouse); paw position aligned on the onset of swing phase during locomotion (mouse); and eye position during pursuit of smooth target motion (monkey).

(B) Average firing rate of different cell types during the corresponding behaviors. Different colors indicate normalized responses for the different cell types. Error

bands show mean ± SEM across neurons.

(C) Neural firing rates divided according to cell type. Colors in each line show the firing rate of individual neurons as a function of time during the four behaviors,

normalized so that the standard deviation in the baseline period was 1.

(legend continued on next page)
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in the ground-truth library accurately while also reporting its con-

fidence in each identification. The cell types predicted by the

classifier for recordings from mouse and monkey agree with ex-

perts’ assessments. The success of the classifier is unexpected

evidence that the properties of different cerebellar cell types are

consistent across species and cerebellar regions. We are

encouraged by the accuracy and precision of our classifier and

expect that it will be possible in the future to align the cell type

obtained from extracellular recordings with that obtained from

other levels of analysis, including anatomical and molecular

fingerprints.

Cell-type identification enables important biological insights

about circuit organization, circuit dynamics, and the relation-

ship between output dynamics and behavior. For two of the be-

haviors we study, different cell types showed very different

population dynamics, suggesting distinct roles for different

cell types in cerebellar processing and circuit computation.

For the other two behaviors, population dynamics were shared

among all the different cell types, perhaps as a result of the

highly heterogeneous neural response profiles within each cell

class that underlie these behaviors. Cell-type identification

opens avenues to use multiple different strategies for biological

insights that will emerge from future analyses. For example, the

combination of cell-type identification and simultaneous re-

cordings should allow direct measurements of connectivity

strengths and circuit function using cross-correlogram analysis,

as well as localization of multiple sites of learning in a single cir-

cuit. Alternatively, analysis of the dynamics70–72,74,80 in different

cell types could reveal population dynamics related to motor

behavior in output neurons and to context in specific types of

interneurons.

Past attempts to identify discrete populations of cerebellar

cortical neurons19,50–53,81 were less successful than ours. Previ-

ous studies identified neurons either (1) by qualitative agreement

with spiking signatures found in vitro or (2) agreement with re-

cordings in anesthetized preparations where neurons were iden-

tified anatomically via juxtacellular labeling.19,49–51,53,81 Our re-

cordings in awake, behaving mice demonstrate large variance

in the discrete metrics used by past attempts for summarizing

spiking activity both within and across ground-truth classes (Fig-

ure 4F; Table S1). Thus, classification schemes reliant on a finite

set of specific features are unlikely to generalize well to

other tasks or regions,57 or from anesthetized to behaving

preparations.19

Several features of the strategy in our classifier were critical to

its success:

d Raw waveforms and 3D-ACGs: Raw features are an un-

biased input57 and allow the classifier to take advantage

of extensive information in waveform57,58 and discharge

statistics. 3D-ACGs normalize for variations in firing rate

and create a statistic that can be compared across cere-

bellar areas, experimental tasks, and species. Use of

single-channel waveforms (rather than spatial footprints)

allows the classifier to generalize across electrode

types.

d Mitigation of overfitting: A semi-supervised82–84 deep

learning strategy trained the classifier with a relatively small

number of ground-truth neurons while reducing the chan-

ces of overfitting85 through the use of a large unlabeled da-

taset to pretrain the autoencoders (see STARMethods and

Figure S5). Successful predictions of cell types that agree

with two expert-classified datasets support the generaliz-

ability of the classifier.

d Confidence: We were particularly cognizant of making our

classifier trustworthy. We established confidence by

training multiple models on the same data.86 By requiring

confidence above a given threshold,87,88 we improved

the accuracy of the model on the ground-truth data as

well as for non-ground-truth recordings. Choice of the con-

fidence threshold allows the user to balance whether to

include all neurons even if some cell-type assignments

might be incorrect or to include fewer neurons with greater

certainty in the cell-type assignment.

When it included layer information as an input, the classifier

identified units with greater accuracy. However, the use of a

layer as an input does not make classification trivial. Rather,

it creates a platform that will become even more useful as we

achieve ground-truth identification of other cell types in the cer-

ebellum, for example, of granule cells with improved recording

probes. Also, because waveform and firing statistics are neces-

sary to distinguish cells that are in the same layer, the classifier

makes a statistical decision about cell type rather than relying

solely on layer for cell-type identification.89 Layer is defined in

a specific way for the cerebellum,1 but we think of layer infor-

mation more generally as a specific example of ‘‘local electrical

properties.’’ We imagine that there are other ways to quantify

those properties, for example, LFPs and current-source-den-

sity analysis,90,91 that will work in brain areas without a laminar

structure.

The strategy we developed may be more useful and important

than the exact classifier. Our goal at the outset of our project was

to achieve cell-type identification from extracellular recordings in

the cerebellar cortex across laboratories and species. We think

that the classifier can be used with confidence by any cerebellar

recording lab that is curating their electrophysiological data with

sufficient rigor. However, a failure of rigorous curation will lead to

noisy and unnecessarily variable inputs to the classifier and will

contaminate its cell-type identifications.58 The larger challenge

is the deployment of our strategy in other brain areas. The use

of layer information to improve classification should be relevant

(D) Two-dimensional trajectories of population dynamics. The trajectories start at the black, filled circle, and the gray trajectory shows the full, cell-type-agnostic

population, and the colored trajectories show different cell types.

(E) Statistical analysis of the differences among the dynamic population trajectories of different cell types. For each behavior, the histogram shows the distance

from each cell type’s trajectory to the cell-type-agnostic trajectory. The half-matrices summarize the p values for the comparison of all trajectories with each

other. Black squares are not statistically significant.

(F) Effect of re-labeling different fractions of each cell-type population randomly on the distance between that cell type’s dynamic population trajectory and the

trajectory for the cell-type-agnostic population.
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to other structures—cerebral cortex,92 hippocampus,93 and su-

perior colliculus94—that have layers with measurable local elec-

trical properties. The strategies used in our classifier enable

generalization by showing how to reduce the dimensions of

raw input data while mitigating the challenges of small numbers

of neurons in training sets. Also, the combination of optogenetic

activation with synaptic blockade adds rigor to the creation of a

ground-truth library.

Limitations of the study
We identify 4 main limitations. (1) Optogenetic identification is

limited to the major cell types in the cerebellar cortex because

Cre lines are not currently available to allow us to add some of

the recently highlighted cell types26 to the ground-truth library.

(2) It was challenging to record from granule cells, in spite of

considerable effort. Advancements in recording probes with

higher impedance and/or more dense recording sites will

eventually resolve this limitation. (3) We expect that our clas-

sifier can be used ‘‘out-of-the-box’’ for cell-type identification

in the cerebellum, but our strategy will need to be used to

develop ground-truth libraries and successful classifiers for

other areas. There cannot be a ‘‘general,’’ area-agnostic clas-

sifier because the biophysical and firing properties of neurons

are fundamentally different in different brain areas.95 (4) At this

time, there is no way to align extracellular electrophysiological

cell-type identifications with those provided by single-cell

RNA sequencing (RNA-seq),96–98 juxta-cellular labeling,50,51

or combinations of in vivo recording and single-cell imaging.99

For example, extracellular electrophysiology cannot ‘‘mark’’

recorded cells for post hoc analysis of molecular identity using

approaches such as RNA-seq. Despite its limitations, our

study demonstrates a strategy that allows different cell types

to be identified robustly and reliably from large-scale electro-

physiological recordings in behaving mice and monkeys. The

strategy should be of great value to the growing community of

cerebellar researchers using high-density silicon probes and

provides a template for principled semi-automated detection

of cell type that can be applied across other neural circuits

in the brain.
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76. Senzai, Y., and Buzsáki, G. (2017). Physiological Properties and Behav-

ioral Correlates of Hippocampal Granule Cells and Mossy Cells. Neuron

93, 691–704.e5. https://doi.org/10.1016/j.neuron.2016.12.011.

77. Lemon, R.N., Baker, S.N., and Kraskov, A. (2021). Classification of

Cortical Neurons by Spike Shape and the Identification of Pyramidal

Neurons. Cereb. Cortex 31, 5131–5138. https://doi.org/10.1093/cer-

cor/bhab147.

78. Ardid, S., Vinck, M., Kaping, D., Marquez, S., Everling, S., and Womels-

dorf, T. (2015). Mapping of Functionally Characterized Cell Classes onto

Canonical Circuit Operations in Primate Prefrontal Cortex. J. Neurosci.

35, 2975–2991. https://doi.org/10.1523/JNEUROSCI.2700-14.2015.

79. Mitchell, J.F., Sundberg, K.A., and Reynolds, J.H. (2007). Differential

attention-dependent response modulation across cell classes in ma-

caque visual area V4. Neuron 55, 131–141. https://doi.org/10.1016/j.

neuron.2007.06.018.

80. Remington, E.D., Egger, S.W., Narain, D., Wang, J., and Jazayeri, M.

(2018). A Dynamical Systems Perspective on Flexible Motor Timing.

Trends Cogn. Sci. 22, 938–952. https://doi.org/10.1016/j.tics.2018.

07.010.

81. Simpson, J.I., Hulscher, H.C., Sabel-Goedknegt, E., and Ruigrok, T.J.H.

(2005). Between in and out: linking morphology and physiology of cere-

bellar cortical interneurons. In Progress in Brain Research Creating coor-

dination in the cerebellum (Elsevier), pp. 329–340. https://doi.org/10.

1016/S0079-6123(04)48026-1.

82. Hady, M.F.A., and Schwenker, F. (2013). Semi-supervised Learning. In

Handbook on Neural Information Processing Intelligent Systems Refer-

ence Library, M. Bianchini, M. Maggini, and L.C. Jain, eds. (Springer),

pp. 215–239. https://doi.org/10.1007/978-3-642-36657-4_7.

83. Peikari, M., Salama, S., Nofech-Mozes, S., and Martel, A.L. (2018). A

Cluster-then-label Semi-supervised Learning Approach for Pathology

Image Classification. Sci. Rep. 8, 7193. https://doi.org/10.1038/

s41598-018-24876-0.

84. van Engelen, J.E., and Hoos, H.H. (2020). A survey on semi-supervised

learning. Mach. Learn. 109, 373–440. https://doi.org/10.1007/s10994-

019-05855-6.

85. Mahmud, M.S., and Fu, X. (2019). Unsupervised classification of high-

dimension and low-sample data with variational autoencoder based

dimensionality reduction. In 2019 IEEE 4th International Conference on

Advanced Robotics and Mechatronics (ICARM), pp. 498–503. https://

doi.org/10.1109/ICARM.2019.8834333.

86. Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., and Suganthan, P.N.

(2022). Ensemble deep learning: a review. Eng. Appl. Artif. Intell. 115,

105151. https://doi.org/10.1016/j.engappai.2022.105151.

87. Hendrycks, D., and Gimpel, K. (2016). Bridging Nonlinearities and Sto-

chastic Regularizers with Gaussian Error Linear Units. Preprint at arXiv.

88. Taha, A.A., Hennig, L., and Knoth, P. (2022). Confidence estimation of

classification based on the distribution of the neural network output layer.

Preprint at arXiv.org. https://arxiv.org/abs/2210.07745v2.

89. Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep

network training by reducing internal covariate shift. In Proceedings of

the 32nd International Conference on International Conference on Ma-

chine Learning - Volume 37 ICML’15 (JMLR.org), pp. 448–456.
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Mouse anti-Parvalbumin Millipore Cat#MAB1572; RRID:AB_2174013

Donkey anti-Rat-Alexa 594 Invitrogen Cat#A-21209; RRID:AB_2535795

Goat anti-Mouse-Alexa 633 Invitrogen Cat#A-21050; RRID:AB_2535718

Bacterial and virus strains

AAV1.CAGGS.Flex.ChR2.tdTomato U. Penn Vector Core N/A

AAV1.Ef1a.Flex.GtACR2.eYFP Duke Vector Core N/A

Chemicals, peptides, and recombinant proteins

Neurotrace 435/455 Thermo Fisher Scientific Cat#N21479

DAPI, Dihydrochloride EMD Millipore Cat#268298

Hoechst 33342 Thermo Fisher Scientific Cat#H1399

Vybrant DiD, DiI, and DiO Thermo Fisher Scientific Cat#V22889

ProLong Diamond Antifade Thermo Fisher Scientific Cat#P36965

Gabazine Tocris Cat#1262

NBQX disodium Tocris Cat#1044

D-AP5 Abcam Cat#ab120003

MCPG Tocris Cat#3696

Deposited data

Ground-truth database (spiking and

waveform data)

This paper https://doi.org/10.5522/04/23702850

Experimental models: Organisms/strains

Macca Mulatta Various N/A

C57BL/6J Jackson Labs RRID:IMSR_JAX:000664

B6.Cg-Kittm1(cre)Htng/J ("c-kitIRES-Cre") Amat et al.32 RRID:IMSR_JAX:032923

B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J Jackson Labs RRID:IMSR_JAX:007612

BACa6Cre-C Aller et al.100 N/A

B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/

EGFP)Hze/J

Jackson Labs RRID:IMSR_JAX:021188

B6.Cg-Tg(Pcp2-cre)3555Jdhu/J Jackson Labs RRID:IMSR_JAX:010536

B6.129-Nos1tm1(cre)Mgmj/J Jackson Labs RRID:IMSR_JAX:017526

Tg(Slc6a5-cre)1Uze Foster et al.101 RRID:IMSR_JAX:038515

B6.Cg-Tg(Atoh1-cre)1Bfri/J Jackson Labs RRID:IMSR_JAX:011104

B6.Cg-Gt(ROSA)26Sortm32(CAG-

COP4*H134R/EYFP)Hze/J

Jackson Labs RRID:IMSR_JAX:024109;

IMSR_JAX:012569

Recombinant DNA

pAAV-EF1a-Flex(loxP) rev-GtACR2.eYFP Gaffield et al.102 N/A

Software and algorithms

NeuroPyxels (including automated

cerebellar classifier)

Github https://github.com/m-beau/NeuroPyxels

Database visualization/exploration tool This paper https://www.c4-database.com/

Maestro Lisberger Laboratory https://sites.google.com/a/srscicomp.

com/maestro/

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement
We conducted experiments in four laboratories and on two species, mice and macaque monkeys. All mouse procedures in

the H€ausser lab were approved by the local Animal Welfare and Ethical Review Board at University College London and per-

formed under license from the UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986 and in line

with the European Directive 2010/63/EU on the protection of animals used for experimental purposes. Mouse procedures in

the Hull and Medina labs were approved in advance by the Institutional Animal Care and Use Committees at Duke University

and Baylor College of Medicine, respectively, based on the guidelines of the United States’ National Institutes of Health. Mon-

key procedures in the Lisberger lab were approved in advance by the Institutional Animal Care and Use Committee at Duke

University. Every effort was made to minimize both the number of animals required and any possible distress they might

experience.

Animals
Mouse

We used adult (>P60) male and female C57BL/6J wildtype mice and transgenic mice maintained on the C57BL/6J background. Ex-

periments were conducted during the light cycle in the H€ausser and Hull labs and the dark cycle in the Medina lab. All mice were

housed in an animal facility with standardized temperature and humidity, with 12 h light/dark cycles and food and water ad libitum,

except reward conditioning experiments and some optotagging experiments where animals were water restricted to 85% of initial

body weight. The following mouse lines were used:

d H€ausser: Channelrhodopsin-2 (ChR2) was expressed in various cerebellar cell types primarily by crossing Cre lines to a Cre-

dependent ChR2-eYFP reporter line103 (Ai32, B6.Cg-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J), or, in a subset of

experiments, by injecting Cre-dependent ChR2 virus (AAV1.CAGGS.Flex.ChR2-tdTomato [UPenn]). Cre lines were:

BAC-Pcp2-IRES-Cre (B6.Cg-Tg(Pcp2-cre)3555Jdhu/J), intended to label Purkinje cells34; Nos1-Cre (B6.129-Nos1tm1(cre)

Mgmj/J), intended to label molecular layer interneurons104; Glyt2-Cre (Tg(Slc6a5-cre)1Uze), intended to label Golgi cells33;

and Math1-Cre (B6.Cg-Tg(Atoh1-cre)1Bfri/J), intended to label granule cells.105 In addition to the transgenic crosses and viral

ChR2 expression, we used the Thy1-ChR2 line 18 (B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J) to express ChR2 in mossy fibers.35

Recordings using each strategy were performed as follows: L7-Cre x Ai32 – 1 recording (1 mouse), Nos1-Cre x Ai32 – 40 re-

cordings (34 mice), Nos1-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 3 recordings (3 mice), GlyT2-Cre x Ai32 – 32 recording

(31 mice), GlyT2-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 3 recordings (3 mice), Math1-Cre x Ai32 – 47 recording

(38 mice), Math1-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 3 recordings (3 mice), and Thy1-ChR2 line 18 – 26

recordings (22 mice). The specificity of opsin expression in the cerebellum of our Cre transgenic crosses was further investi-

gated by crossing the listed Cre lines to a Cre-dependent tdTomato reporter line, Ai9 (B6.Cg-Gt(ROSA)26Sortm9(CAG-

tdTomato)Hze/J),106 so that we could evaluate expression specificity through cytosolic, rather than membrane-bound,

fluorescence.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SpikeGLX Github https://billkarsh.github.io/SpikeGLX

Phyllum Github https://github.com/blinklab/Phyllum_public

Phy Github https://github.com/cortex-lab/phy

Kilosort Github https://github.com/cortex-lab/Kilosort

Full Binary Pursuit Github https://github.com/njh27/spikesorting_

fullpursuit

Python 3 Python software foundation https://www.python.org

PyTorch The Linux Foundation https://pytorch.org/

ZEN ZEISS https://www.zeiss.com/microscopy/en/

products/software/zeiss-zen.html?

vaURL=www.zeiss.com/zen

BakingTray Github https://github.com/SWC-Advanced-

Microscopy/BakingTray

Matlab MathWorks https://mathworks.com
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d Hull: Mice expressing ChR2 or the inhibitory GtACR2 or ArchT opsins were generated by either: 1) crossing the c-kitIRES-Cre

line, intended to label molecular layer interneurons,32 with a Cre-dependent ArchT-GFP reporter line (Ai40 (B6.Cg-Gt(ROSA)

26Sortm40.1(CAG-aop3/EGFP)Hze/J),107 or 2) crossing the BACa6Cre-C line, intended to label granule cells,100 with

the Ai32103 Cre-dependent ChR2 reporter line. Alternatively, we injected the same Cre lines with Cre-dependent

viruses: (AAV1.CAGGS.Flex.ChR2-tdTomato into c-kitIRES-Cre and BACa6Cre-C, and AAV1.Ef1a.Flex.GtACR2.eYFP into

c-kitIRES-Cre). In addition, we used the Thy1-ChR2 line 18 to express ChR2 in mossy fibers. Recordings using each strategy

were performed as follows: c-kitIRES-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 8 recordings (2 mice), c-kitIRES-Cre x Ai40 – 3

recordings (1 mouse), c-kitIRES-Cre + AAV1.Ef1a.Flex.GtACR2.eYFP – 11 recordings (6 mice), BACa6Cre-C x Ai32 – 22

recordings (12 mice), BACa6Cre-C + AAV1.CAGGS.Flex.ChR2-tdTomato – 10 recordings (4 mice), and Thy1-Chr2 line

18 – 13 recordings (4 mice).

d Medina: All experiments were performed in wildtype C57BL/6J mice obtained from Jackson Laboratories.

Monkey

Recordings in non-human primates were conducted in the Lisberger lab on three adult male rhesus monkeys (Macaca mulatta)

weighing 10-15 kg.

METHOD DETAILS

Surgery
Mouse

All labs followed the same procedure to prepare mice for awake in vivo recordings by implanting a headplate/headpost under iso-

flurane anesthesia in sterile conditions. Pre-operative and post-operative analgesia were administered, and mice were allowed to

recover from surgery for at least one week before being habituated to head-fixation and prepared for recordings. Lab-specific details

are as follows:

d H€ausser: We installed a custom-made aluminum headplate with a 5 mm long and 9 mm wide oval inner opening over the

cerebellum. Mice received a steroid anti-inflammatory drug at least 1 hour before surgery (dexamethasone, 0.5 mg/kg),

followed by an analgesic NSAID (meloxicam, 5mg/kg) immediately before surgery. Anesthesia was induced and main-

tained with 5% and 1-2% isoflurane, respectively. The headplate was positioned over lobule simplex of the left cere-

bellar hemisphere, angled at approximately 26� with respect to the transverse plane, and attached to the skull with

dental cement (Super-Bond C&B, Sun-Medical). Post-operative analgesia (carprieve, 5 mg/kg) was given for 3 days.

After several days of habituation on the recording apparatus, a 1 mm-diameter craniotomy and durotomy were per-

formed to allow access for Neuropixels probes into the lobule simplex (3 mm lateral to the midline, anterior to the in-

terparietal-occipital fissure). Before the craniotomy, a conical nitrile rubber seal (Stock no. 749-581, RS components)

was attached to the headplate with dental cement to serve as a bath chamber. The exposed brain was then covered

with a humid gelatinous hemostatic sponge (Surgispon) and silicone sealant (Kwik-Cast, WPI) until the experiment

was performed (1-2 h after recovery). At the beginning of the experiment, mice were head-fixed, the silicone sealant

was removed, and physiological HEPES-buffered saline solution was immediately applied to keep the craniotomy

hydrated.

d Hull: We installed a titanium headpost (HE Palmer, 32.6x19.4 mm) to the skull and a stainless-steel ground screw (F.S. Tools)

over the left cerebellum, both secured with Metabond (Parkell). Mice received dexamethasone (3 mg/kg) 3-4 hours before

surgery and an initial dose of ketamine/xylazine (50 mg/kg and 5 mg/kg, IP) and carprofen (5 mg/kg) 20 min before induction

with isoflurane anesthesia. Isoflurane was administered at 1-2% throughout surgery to maintain appropriate breathing rates

and prevent toe pinch response, which were monitored throughout the duration of the surgery. Body temperature was

maintained with a heating pad (TC-111 CWE). Mice received buprenex and cefazolin (0.05 mg/kg and 50 mg/kg respectively,

subcutaneously) twice daily for 48 hours after surgery and were monitored daily for 4 days. After 2+ weeks of recovery,

mice received dexamethasone (3 mg/kg) 4-24 hours before recordings. Craniotomies (approx. 0.5-1.5 mm) were opened

over vermis or lateral cerebellum (relative to bregma: between -6.0 and -7.0 mm AP, and between 1.0 and 2.8 mm ML)

on the first day of recording, under 1-2% isoflurane anesthesia, and were sealed between recordings using Kwik-Cast

(WPI) covered by Metabond. Craniotomies could be re-opened for subsequent recordings under brief (<30 min) 1-2% iso-

flurane anesthesia.

d Medina: Preoperative analgesia was provided (5 mg/kg meloxicam, 0.02mL 0.5% bupivacaine and 2% lidocaine) and sur-

gery was carried out under sterile conditions. Mice were anesthetized with isoflurane (5% by volume in O2 for induction

and 1-2% by volume for maintenance; SurgiVet) and kept on a heating pad to maintain body temperature. The skull was

exposed and leveled to match the stereotaxic plane before two stainless steel screws were implanted (relative to bregma:

AP -0.3 mm, ML ±1.4 mm) to anchor the whole preparation. A custom-made stainless steel headplate was placed over the

screws and the whole preparation was secured to the skull with Metabond cement (Parkell). Additionally, a craniotomy
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was performed (relative to bregma: AP -5.5 mm) consisting of a 5x2 mm section of bone removed to expose the cerebellar

vermis and the right anterior and posterior lobes. A chamber was then built with Metabond to cover the exposed bone

around the craniotomy, the dura was protected with a thin layer of biocompatible silicone (Kwik-Cast, WPI), and the whole

chamber was sealed with silicone adhesive (Kwik-Sil, WPI). Mice were monitored until fully recovered from anesthesia and

analgesia was provided during the three days following the surgical procedure.

Monkey

A portion of the primate dataset reported here has been published previously along with corresponding detailed methods.108 Briefly,

monkeys underwent several surgical procedures under isoflurane in preparation for neurophysiological recordings. In succession,

we (i) affixed a head-holder to the calvarium, (ii) sutured a small coil of wire to the sclera of one eye tomonitor eye position and velocity

using the search coil technique109 and (iii) implanted a recording cylinder aimed at the floccular complex. Analgesics were provided to

the monkeys after each surgery until they had recovered.

Extracellular recording procedures
Mouse

All the mouse labs followed the same general procedures for cerebellar recordings. Mice were progressively habituated to head fix-

ation prior to Neuropixels recordings. Neuropixels 1.016 probes were inserted into the cerebellar cortex at a speed of 1-4 mm/s while

monitoring electrophysiological signals. Probes were typically inserted to a recording depth of 2-3 mm below the cerebellar surface

and allowed to settle for at least 20 minutes before commencing data acquisition. The recording chamber surrounding the crani-

otomy was bathed in ACSF, with or without synaptic blockers. In all three laboratories, Neuropixels data were acquired using

SpikeGLX and signals were digitized at 30 kHz.

Monkey

Each day, we acutely inserted either tungsten single electrodes (FHC) or, for the majority of our data, custom-designed Plexon

s-Probes into the cerebellar floccular complex. Plexon s-Probes included 16 recording contacts (tungsten, 7.5 mm diameter) spaced

in two columns separated by 50 mm. Adjacent rows of contacts were also separated by 50 mm. Once the electrode reached the

ventral paraflocculus, we allowed the electrode to settle for a minimum of 30 minutes. We recorded continuous wideband data

from all contacts at a sampling rate of 40 kHz using the Plexon Omniplex system.We used a 4th order Butterworth low-pass hardware

filter with a cutoff frequency of 6 kHz prior to digitization to eliminate distortion of the recorded signal by the electrical field produced

by the magnetic field that enabled measurement of eye movement.

Reconstruction of Neuropixels probe tracts
Neuropixels probes used in the mouse experiments were coated with DiI, DiO, or DiD (Cat.Nos.V22885, V22886, and V22887;

Thermo Fisher Scientific) by repeatedly moving a drop of dye along the probe shank using a pipette until a dye residue was visible

along its entire length (�20 passes). After each recording, the probe was removed and soaked in Tergazyme, then soaked in distilled

water, and finally washedwith isopropyl alcohol. After the last recording session, the brains were fixed and processed for histology to

verify recording locations.

d H€ausser: Mice were deeply anesthetized with ketamine/xylazine and perfused transcardially with PBS followed by 4% PFA

in PBS. The brains were dissected and post-fixed overnight in 4% PFA, then embedded in 5% agarose. To reconstruct

electrode tracts, we imaged full 3D stacks of the brains in a custom-made serial two-photon tomography microscope

coupled to a microtome,110 controlled using ScanImage (2017b, Vidrio Technologies) and BakingTray. Brains were imaged

at 20 mm intervals and sectioned at 40 mm (2 optical sections/slice). Images were acquired in two channels (green channel:

500–550 nm, ET525/50; red channel: 580–630 nm, ET605/70; Chroma) through a piezo-mounted (PIFOC P-725, Physik

Instrumente) Nikon 16x/0.8NA objective. Each section was imaged in 1025 x 1025 mm tiles at 512x512-pixel resolution

with 7% overlap.

d Hull: After the last day of recording, mice were deeply anesthetized with ketamine/xylazine (350 mg/kg and 35 mg/kg)

and perfused with PBS followed by 4% PFA in PBS. Brains were extracted and post-fixed in 4% PFA in PBS over-

night, then sectioned at 100 mm using a vibratome (Pelco 102). Before sectioning, some brains were encased in a 2%

agar block for stability. Slices were either stained with DAPI (DAPI, Dihydrochloride, 268298, EMD Millipore) and then

mounted with mounting medium (Fluoromount-G, Southern Biotech) or were mounted with a DAPI-containing mounting

medium (DAPI Fluoromount-G, Southern Biotech). Electrode tracts were visualized using a confocal microscope (Leica

SP8).

d Medina: After perfusion with 4% PFA in PBS, brains were extracted, post-fixed in the same solution for at least 12h and

then cryoprotected in 30% sucrose solution in PBS for 48h. The brains were aligned so the coronal sections would match

the track angle and sectioned at 50 mm on a cryostat (Leica CM1950). Free floating sections were recovered in PBS and

incubated in Hoechst solution for 3 minutes (Hoechst 33342, 2mg/mL in PBS-TritonX 0.25%, Thermo Fisher Scientific).
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Sections were then washed in PBS three times and coverslipped using fluorescence protectant medium (ProLong Dia-

mond Antifade, Thermo Fisher Scientific). Epifluorescence was acquired at 10x magnification on an Axio Imager Z1 mi-

croscope (Zeiss), and track reconstruction and measurements were made using microscopy analysis software (ZEN soft-

ware, Zeiss).

Optogenetic stimulation and pharmacology
Ground-truth neurons were recorded in mouse experiments, using the same general procedures for optogenetic stimulation

and pharmacology in both the H€ausser and Hull labs. This procedure consisted of four phases: (1) A baseline phase re-

corded spontaneous activity. (2) A control phase applied light externally to the cerebellum or, in some recordings,

through a tapered optic fiber that ran alongside the recording probe to activate opsins in the cell types that expressed

them. (3) An infusion phase delivered light to the cerebellum while we added synaptic blockers20 to the surface of the cer-

ebellum. Application of synaptic blockers on the surface of the cerebellum preserves the integrity of the tissue. (4) A

blockade phase, after the synaptic blockers had permeated well into the tissue, assayed neurons for direct responses to

optogenetic stimulation. The details of the procedures for ground-truth identification of cell-type varied slightly between

the two labs.

d H€ausser: Optogenetic stimulation was performed using 1 or 2 blue LEDs (470 nm, Thorlabs M470F3) and, in some

experiments, a blue laser for surface illumination (Stradus 472, Voltran). Surface illumination was performed by

coupling the laser or the LED via a patch cable (M95L01, Thorlabs) to a cannula (CFMXB05, Thorlabs) positioned

in contact with the brain surface near the probe. In some experiments a second illumination source - a tapered fiber

(Optogenix 0.39NA/200mm) glued directly to the head of the Neuropixels probe - was inserted into the brain. Total po-

wer at the fiber tip (surface fiber) and coupling cannula (tapered fiber) was 1-6.9 mW. Each recording session con-

sisted of: (1) a 20 minute baseline period of spontaneous activity, (2) a set of 50 optogenetic stimuli (at 0.1 Hz: 1 stim-

ulation of 250 ms or a train of 5 stimulations of 50 ms at 5 Hz, depending on the experiment), (3) an application of a

synaptic blocker cocktail (Gabazine 0.2-0.8 mM, NBQX 0.8 mM, APV 1.6 mM, MCPG 0-1.3 mM) to the surface of the

cerebellum followed by a 20 minute incubation, and (4) a second set of 50 optogenetic stimuli in the presence

of synaptic blockers. We did not record any neurons in the ground-truth library with the blue laser as a source of

photostimulation.

d Hull: Neurons expressing ChR2 or GtACR2were respectively activated or inhibited with a 450 nm laser (MDL-III, OptoEngine)

and neurons expressing ArchT were inhibited using a 532 nm laser (MGL-III, OptoEngine). Lasers were coupled with a

400-micron optic patch fiber (FT400 EMT, Thorlabs) that was positioned 4-10 mm from the brain surface. Power at the brain

surface was approximately 2-30 mW and was calibrated for each experiment to produce neuronal responses with minimal

artifact. Laser stimulations lasted 50 or 100 ms and were delivered at 0.1 Hz throughout the recording after the 20-minute

baseline period, with brief pauses to replenish ACSF or apply blockers (Gabazine 0.2-0.8 mM, NBQX 0.6-1.2 mM, AP-5

0.15-0.6 mM, MCPG 1-2.5 mM). Synaptic block was achieved with gabazine alone in recordings targeting MLIs except

one recording where blocker was not applied and 3 MLIs were accepted into the ground-truth library based on direct inhib-

itory GtACR2 responses with short latency (<3 ms, a latency that seems too short to occur because of synaptic inputs rather

than direct inhibition).

Histological assessment of opsin expression
To assess the specificity of opsin expression, PFA-fixed brains of the different transgenic mouse lines (Cre-lines crossed to the tdTo-

mato reporter line) were sectioned at 100 mm and prepared for immunohistochemistry. Sections were blocked with 2.5% normal

donkey serum / 2.5% normal goat serum / 0.5% Triton X-100/PBS for 4-6 hours at room temperature, primary antibodies for

4-6 days at 4�C, and secondary antibodies overnight at 4�C. Antibodies were diluted in blocking solution. The following antibodies

were used: rat anti-mCherry (1:250, ThermoFisher M11217), Mouse anti-Parvalbumin (1:1000, Millipore MAB1572), Donkey anti-Rat-

Alexa 594 (1:1000, Invitrogen), and Goat anti-Mouse-Alexa 633 (1:1000, Invitrogen). Neurotrace 435/455 (1:250, ThermoFisher

N21479) was added to the secondary antibody solution. Sections were mounted and imaged on a Zeiss LSM 880 using a 20x objec-

tive in 425x425 mm tiles at 1024x1024-pixel resolution.

To identify the classes of cerebellar neurons that expressed optogenetic actuators, we determined the layer in which fluores-

cent neurons were present and whether they expressed parvalbumin (PV), which should be present in all molecular layer inter-

neurons and Purkinje cells.111 The location of cerebellar layers in each image was identified in the Neurotrace (fluorescent Nissl)

channel. The soma locations of neurons expressing tdTomato (as a proxy for Cre expression) and PV were marked manually

in grayscale images using Fiji (NIH). Neurons were deemed to express both tdTomato and PV if their somatic locations

were less than 5 mm apart, and the layer of each neuron was determined by overlaying the Neurotrace laminar mask to cell

locations.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of extracellular recordings
Spike sorting and curation

d Mouse: Following data acquisition, automated spike sorting was performed using Kilosort 2.017,112 and a preliminary

manual curation was performed using Phy. Then, we applied multiple quality checks to ensure that the resulting

clusters selected for further analysis corresponded to single units with physiological waveforms, good isolation prop-

erties, and few or no refractory period violations. Rigorous curation was especially important for our long recordings,

which could have periods of good isolation intermixed with periods of drift or poor unit isolation. We divided our re-

cordings into overlapping segments (30 second segments computed every 10 seconds) and computed the ‘false-pos-

itive’ and ‘false-negative’ rates in each segment. False positives were defined as spikes that fell within the refractory

period of a unit (± 0.8 ms from a given spike) and termed refractory period violations (RPVs). The proportion of

false-positives was estimated as the quotient between the RPV rate and the mean firing rate.42 False negatives

were defined as spikes that were not detected because they fell below the noise threshold of the recording. They

were estimated by fitting each unit’s spike amplitude distribution with a Gaussian function43,44 and quantifying the

fraction of area under the curve clipped at the noise threshold. A 30-second segment was deemed acceptable if it

had less than 5% false positive and false negative rates. Acceptable intervals were concatenated and used for sub-

sequent classifier training. A unit was required to have 3 minutes of acceptable isolation during the baseline period to

be included in the sample.

For each neuron in the ground-truth library, we performed an additional analysis to assess the quality of unit isolation.

We used an equation derived by others48 to estimate the ‘‘fraction of uncontaminated spikes’’ (i.e. not noise or neigh-

boring neurons) from measurements of the number of refractory period violations (nv), the total number of spikes (N),

the refractory period interval (Tr), and the mean firing rate (MFR):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � nv

N�MFR�Tr

q
. All the neurons in the ground-truth

library, except for only a small subset of mossy fibers, had a fraction of uncontaminated spikes more than 0.97

when we measured refractory period violations +1 ms from the trigger spike (Tr=0.001). However, mossy fibers

have shorter refractory periods and can burst at up to 1,000 spikes/s. Therefore, we re-measured refractory period

violations +0.5 ms from the trigger spike (Tr=0.0005) and estimated the fraction of true spikes from those

measurements.

d Monkey: Following each recording session, individual action potentials were assigned to putative neural units using the

semi-automated ‘‘Full Binary Pursuit’’ sorter,113 designed to distinguish temporally and spatially overlapping spikes from

different neurons. Following automated sorting, we manually curated our dataset, removing neurons with significant inter-

spike interval violations or low signal-to-noise ratios. The majority of units in our primate dataset significantly exceeded

the metrics used for automated curation of the mouse data, which potentially biases our sample of primate units towards

those that are easier to record.

Data harmonization

To achieve consistency of the extracellular recording data acquired across labs and setups, we implemented several procedures

(Figure S1):

1. We mitigated the filtering introduced by the hardware filter on Neuropixels probes. It is possible to disable the filter and we did

so for some of our mouse recordings. It also was not a factor for the monkey recordings. To harmonize all the recordings, we

applied a comparable causal first-order Butterworth high-pass filter (300Hz cutoff) to thewideband voltage recordingsmade in

monkeys and those obtained without the hardware filter in mice.

2. We used a two-step procedure to construct a high-quality waveform template for each unit: (a) We sub-sampled the

spikes of each neuron by grouping waveforms with a similar amplitude on the principal channel, and therefore the

same drift-state (i.e. position of probe relative to the recorded neuron): ‘‘drift-matching’’, and (b) We re-aligned

the spikes in time by maximizing the cross-correlation of each spike to a high amplitude template: ‘‘shift-matching’’.

After alignment, the individual spikes were averaged, resulting in the final mean waveform for the neuron under study.

Neuropixels data processing (non-manual curation, filtering, drift-shift-matching) was performed using the NeuroPyxels

library.114

3. We preprocessed all waveform templates by selecting the mean waveform from the highest amplitude channel, re-

sampling it to 30 kHz (if necessary), aligning it to the peak, and flipping it if necessary to ensure the largest deflection

in the waveform was always negative. We did so with the knowledge that the polarity of the action potential waveform

depends on a number of factors including the proximity of the recording electrode to the dendrites, soma, and

axon90,115 and relative orientation of the recording contact and the reference. We used the harmonized waveforms

to compute summary statistics (Figure 4; Table S1) that have been used previously to classify cerebellar

neurons.18,19,50,51
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Assignment of layers with Phyllum

For recordings in the mouse, we assigned the units recorded in each channel of the Neuropixels probe to a layer using

Phyllum,116 a custom-designed plugin for the curation software Phy. The algorithm for layer identification in Phyllum starts

by automatically setting ‘anchor’ channels whose recorded layer can be unambiguously identified by the presence of Purkinje

cell units with simple and complex spikes (Purkinje layer anchor), mossy fiber units with triphasic waveforms (granule layer

anchor), or low 1-2 Hz frequency units with wide waveforms indicative of dendritic complex spikes (molecular layer anchor).

Then, Phyllum fills in the layer of the remaining channels via an iterative procedure based on (1) proximity to the nearest

Purkinje cell anchor and (2) allowed layer transitions. Every channel assigned to the Purkinje cell layer must contain at least

a Purkinje cell recording within 100 mm, but the channel may also contain additional units located in the neighboring granule

or molecular layers. If none of the channels between two consecutive Purkinje cell anchors contain another anchor unit, their

layer is set to ‘Unknown’. On average, Phyllum assigns 82% of all the channels on the Neuropixels probe to a specific

layer. Histological reconstruction of 21 recording tracks confirmed that for channels that are assigned a specific layer, the

assignment is highly accurate: >99% for molecular layer channels, >98% for granule layer channels, and >95% for Purkinje

layer channels.

Identification of units directly responsive to optogenetic stimulation

Units recorded during optogenetic activation experiments were deemed to be directly responsive to photostimulation if they met the

following conditions: (1) their firing rate increased (ChR2) or decreased (GtACR2, ArchT) more than 3.3 standard deviations from the

pre-stimulus baseline within 10ms of stimulation onset in the synaptic blockade phase (computed using 0.1ms bins smoothedwith a

causal Gaussian filter with a standard deviation of 0.5 ms), (2) they were recorded at a depth at which pharmacological blockade was

confirmed, and (3) the spike waveforms evoked in the synaptic blockade phase matched those recorded during the pre-stimulation

baseline phase.

Construction of 3D autocorrelograms

All recordings were performed in awake animals that were either head-fixed but otherwise free tomove on a wheel (mice) or perform-

ing discrete trials of smooth pursuit (primates), resulting in behaviorally-driven modulation of firing rates across the experimental ses-

sion. To normalize for the impact of changes in firing rate on measures of firing statistics, we constructed ‘‘three-dimensional auto-

correlograms’’ (3D-ACGs). At each point in time, we estimated the instantaneous firing rate of the neuron as the inverse interspike

interval.117 We smoothed the firing rates using a boxcar filter (250 ms width) and measured the value of the smoothed instantaneous

firing rate timeseries at the time of each spike. Next, we determined the distribution of firing rates, as assayed at the time of each spike

in a recording, stratified the distribution of firing rates into 10 deciles, and computed separate 2D-ACGs for the spikes in each decile.

We visualized the resulting 3D-ACGs as a surface where the color axis corresponds to the probability of firing, the y-axis stratifies the

firing rate deciles so that each 3D-ACG contains 10 rows, and the x-axis represents time from the trigger spike. Note that the spike

counts in the autocorrelograms have been divided by the width of the bin so that the y-axis or color map is calibrated in spikes/s. As

input to the classifier, we used log-distributed bins relative to t=0 in contrast to the linearly-spaced bins shown in the Figures and

supplemental information.

Human expert labeling of cerebellar units

d Mouse. We performed human expert cell-type identification of an unlabeled mouse dataset collected in the Medina lab.

We used Phyllum to identify the layer of each recording. Most Purkinje cells were identified by the presence of both simple

spikes and complex spikes and complex-spike-triggered histograms that showed a characteristic pause in the simple-

spike firing rate following the complex spike. We identified putative Purkinje cells by the presence of simple spikes without

a complex spike, location in a Purkinje cell layer, and regular firing rate resulting in characteristic ‘‘shoulders’’ present in

the autocorrelogram. Putative molecular layer interneurons were identified by their presence in a molecular layer with firing

rates above 5 spikes/s, incompatible with the firing properties of the dendritic complex spikes. Putative mossy fibers were

in the granular cell layer and some displayed a characteristic triphasic shape due to the negative afterwave recorded near

the glomerulus.45,46 Putative Golgi cells were in the granular cell layer and had broad waveforms and relatively regular

firing rates.

d Monkey. We performed human expert cell-type identification of an unlabeled monkey dataset collected in the Lisberger lab.

We classified recordings as ground-truth Purkinje cells if they demonstrated the characteristic post-complex-spike pause in

simple-spike firing. Units that exhibited known characteristics of Purkinje cell simple spikes but lacked a complex spike

were treated as ‘‘putative’’ Purkinje cells and used in the comparison of classifier-predicted and expert-predicted labels.

We included molecular layer interneurons only if they showed spike-triggered inhibition of an identified Purkinje cell’s simple

spikes at short latency, leaving some potential molecular layer interneurons out of our sample. We included units as putative

mossy fibers only if the waveform showed a negative after-wave, characteristic of recording near a single glomerulus.45,46 We

note that our classification of mossy fibers is highly conservative and likely leaves a large subset of mossy fiber recordings not

near a glomerulus as unlabeled. Putative Golgi cells were identified by their presence in the granule cell layer, broadwaveforms,

and highly regular firing, consistent with previous recordings.50,51 Expert labeling of units in the monkey were performed before

collection and analysis of the ground-truth units in the mouse.
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Classifier design
Webegan the design of our cell-type classifier by selecting its ‘‘hyperparameters’’: the feature space passed to themodel, the model

class, and model characteristics such as number of units and learning rate. Our decision to select hyperparameters independently

from the ground-truth dataset was critical to ensure generalizability by minimizing overfitting.118

General classifier architecture

For generating the inputs to the classifier, we used two pretrained autoencoders to reduce the dimensionality of the waveforms and

3D-ACGs of the neurons in the ground-truth library. The output of the two autoencoders, along with the layer of each neuron, served

as inputs used to train the final classifier on the ground-truth dataset. As detailed below, no aspect of themodel’s feature space or its

architecture was chosen based on themodel’s performance on the ground-truth dataset. Our classifier is a ‘‘semi-supervised’’ model

because it uses two variational autoencoders that were tuned and pretrained with unsupervised learning on a set of unlabeled neu-

rons while the complete classifier was trained with supervised learning on a separate set of ground-truth identified neurons. We

derived our strategy from the ‘‘M1’’ model.119

Feature engineering

To construct an unbiased feature space to train the model, we decided a priori that the model’s inputs would be anatomical location,

extracellular waveform, and firing statistics present in the 3D-ACG.We elected not to use summary firing statistics because they pro-

vide an impoverished set of information compared to the inputs we selected.

Unsupervised pre-training with variational autoencoders

We used two variational autoencoders to reduce the dimensionality of the feature space and optimize the model’s architecture fully

independently from our ground-truth dataset by leveraging n=3,090 curated but unlabeled units that were recorded in the experi-

ments used to create the ground-truth library but were not activated optogenetically.

We pretrained the two autoencoders to reconstruct the waveforms and the log-scaled 3D-ACGs of our unlabeled units. Ultimately,

the autoencoders compressed the input data into two 10-dimensional ‘latent spaces’ for the 2 input features: 3D-ACG andwaveform.

The latent spaces had Gaussian priors that encouraged each network unit to have activation values with zero mean and unit variance

across the unlabeled dataset. The training objective of the variational autoencoders was the ‘Evidence Lower Bound’ loss120 modi-

fied to include a b term to encourage disentanglement of the latent space.121 During training, we employed a Kullback–Leibler diver-

gence annealing procedure to enhance model stability and convergence.122 Both variational autoencoders were trained through

gradient descent with the Adam optimizer, complemented by a cosine-annealing learning rate strategy with periodic warm

restarts.123

To both facilitate model convergence and yield high-quality reconstructions, we manually tuned the variational autoencoder pa-

rameters to adapt the model to our specific data characteristics and improve its performance in subsequent tasks. It is important

to note that the parameters of the autoencoders were optimized based on the quality of the reconstruction of features from neurons

in the unlabeled dataset, completely independent from the ground-truth dataset.

d Thewaveform variational autoencoder consisted of a 2-layer perceptron (2LP) encoder with Gaussian Error Linear Units (GeLU)

non-linearities124 and a 2LP decoder also with GeLU non-linearities. It was trained for 60 epochs with h=1e-4, b=5 and a mini-

batch size of 128.

d The 3D-ACG variational autoencoder consisted of a 2-layer convolutional neural network (CNN) encoder with average pooling

after convolutions, batch normalization, and rectified linear unit (ReLU) non-linearities, and a 2LP decoder with ReLU non-lin-

earities. It was trained for 60 epochs with h=5e-4, b=5 and a mini-batch size of 32.

Semi-supervised classifier

The complete classifier model consisted serially of: (1) the waveform and 3D-ACG variational autoencoders pretrained on unlabeled

data to reduce the dimensionality of the input features; (2) a multi-headed input layer that accepted the latent spaces of the waveform

and 3D-ACG variational autoencoders, along with a ‘‘one-hot-encoded’’ 3-bit binary code of the neuron’s cerebellar layer; (3) a single

fully-connected hidden layer with 100 units that processed the 3 inputs; (4) an output layer with one output unit for each of the 5 cell

types. The values of the 5 output units sum to 1 via a softmax function so that the output of the classifier is the probability that a given

set of inputs is from each of the 5 cell types. Between the input layer and the fully-connected hidden layer, we applied batch normal-

ization89 to equate the contributions of waveform, discharge statistics, and layer.

Supervised training procedure

We trained the weights of the complete classifier on the data in the ground-truth library using gradient descent with a leave-one-out

cross-validation strategy. We trained themodels until convergence or for 20 epochs, whichever came first, with h=1e-3, amini-batch

size of 128 and the AdamW optimizer.123 We allowed the weights in the pre-trained variational autoencoders to change during opti-

mization to allow fine-tuning that caused a small improvement in performance on the downstream classification task.

Strategies to mitigate overfitting

We adopted 6 regularization procedures to minimize the risk of overfitting.

1. We reduced input dimensionality to minimize the number of parameters in the ultimate classifier that needed to be trained de

novo by pre-training two variational autoencoders using an unsupervised procedure (see above).120
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2. We fixed the hyperparameters of the classifier before beginning the training procedure.

3. We used data augmentation strategies that are designed to regularize highly expressive models such as deep networks. We

built a total of 7 custom data augmentations, 2 specific to the waveforms and 5 specific to the spike trains.

4. We used dropout layers within the classifier to ensure that the model does not rely too heavily on any single feature or neuron.

5. We employed early-stopping by interrupting training of our models at the earliest signs of convergence on the training set.

6. Our final model is an ensemble that combines the predictions of multiple models to produce its output and helps to reduce the

variance associated with individual models. The ensemble approach mitigates overfitting by averaging out the errors of the

individual models.

The fact that the classifier agrees well with the classification of experts on independent datasets from both monkey and mouse

provides additional evidence that the classifier is not significantly overfit.

Assessment of autoencoder operation

To generate the graphs in Figure S5D and evaluate whether the variational autoencoders in the classifier could represent a broad

range of input statistics in their latent space and capture the variance in our data, we provided novel inputs to the decoding half

of each autoencoder and visualized the resulting reconstructions.120 Because the values supplied to the decoder could change in

10 dimensions (corresponding to the 10-dimensional latent space), to visualize the reconstructions we identified the two dimensions

in the latent space that accounted for the majority of the variance across our training dataset. We utilized the encoder network to

encode the waveforms and 3D-ACGs of 3090 unlabeled units onto a latent space. Within this space, we then performed principal

component analysis to identify the two components that accounted for themost variance.We generated novel inputs to the decoding

half of the autoencoder via the weighted sum of these two principal components.

The location of each reconstructed waveform and 3D-ACG in the 8x8matrices in Figure S5D corresponds to the relative position of

the weights applied to the first (horizontal axis) and second (vertical axis) principal components. The weights were chosen as the

octiles of a mean-zero Gaussian distribution whose standard deviation was chosen to yield a representative distribution of the wave-

forms and 3D-ACGs observed across these principal components. We chose the weights from a Gaussian distribution because the

distribution of activations across each unit in the latent space was encouraged to be a zero-mean Gaussian through the assigned

standard normal prior, but other choices of weights across a similar range of values would yield qualitatively similar results. We

reasoned that if the autoencoders were overfit or if the set of waveforms and 3D-ACGs in the unlabeled dataset were insufficiently

diverse, we would observe discontinuities in the reconstructed outputs rather than smooth transitions that could accommodate a

wide range of input statistics.

Evaluation of classifier performance
Cell-type classification of ground-truth neurons

We took multiple steps to evaluate the performance of the classifier on the ground-truth library and ensure that it generalizes well

across datasets:

1. To account for ‘‘class imbalance’’ created by the different number of neurons in each cell type, we performed random over-

sampling of the under-represented cell types for every model after splitting into testing and validation data.125

2. We assessed the performance of all models through leave-one-out cross-validation, which has a lower bias and compa-

rable variance to other cross-validation methods126,127 and has been used in the past to assess performance on small

datasets.19

3. We adopted a strategy to prevent confidence miscalibration, the tendency of deep neural networks to exhibit over-confidence

in their predictions.128 We corrected the overconfidence of each model instance by applying a last-layer Laplace approxima-

tion to the output layer.129,130

4. We quantified classifier confidence by averaging the predicted probability for each cell type across the 10 instantiations of

the model. We computed the confidence ratio as the ratio of the highest- to second-highest predicted cell-type for the

input features from each cell in our samples. We chose a confidence ratio of 2 as the confidence threshold, but higher

thresholds could be applied to increase confidence in each prediction of cell type. Many ground-truth neurons were as-

signed high probabilities for the same cell type across 10 instantiations of the model. However, that need not have been

the case: if the data for a given unit were compatible with more than one cell type, then the classifier might classify the

unit as highly-probable to be cell type #1 in one model instance and highly-probable to be cell type #2 in another instance:

the average probabilities across 10 runs of the classifier might be similar and therefore closer to 0.5 for these two cell

types, indicative of low classifier confidence.

Cell-type classification of unlabeled mouse and macaque neurons

We predicted the cell type of unlabeled mouse (Medina) and macaque (Lisberger) cerebellar neurons that were not involved in the

classifier training procedures using an ensemble classifier that utilized all ground-truth neurons and initial conditions (202 x 10 =

2020 models in total). Each of the 2020 models made a unique prediction because it was slightly different from the other models

due to the use of (i) 10 different initial conditions for training the models and (ii) training on different subsets of neurons because

of the ‘leave-one-out’ procedure. The predicted cell-type of each neuron in the unlabeled sample was chosen as that with the
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maximum average prediction across the 2020 models. We applied the confidence ratio and confidence threshold as we had for the

analysis of cell-type classification in the ground-truth library.

Analysis of neural dynamics during behavior
Behavioral paradigms

We leveraged our classifier to investigate the temporal profiles of distinct populations of classifier-labeled neurons during discrete

trials in four behavioral paradigms:

d H€ausser: Data were recorded inmice performing self-initiated locomotion. Five days after surgery, mice began water restriction

and habituation to head fixation on the running wheel. Mice were head fixed on the wheel once daily for about 30 min and were

rewarded with drops of water for moving forward on the wheel. On the day of the recording, mice typically ran 150 meters in

about 1 hour. Locomotion was recorded with a Vision Mako U-130B camera at 100 frames/s and the ipsilateral forepaw of the

animals was tracked with DeepLabCut131. Forepaw swing onsets were identified by thresholding the paw trajectory in polar

coordinates (phase obtained from Hilbert transform) and used to align neural data.

d Hull: Mice were water restricted for at least five days prior to experiments and then habituated to head fixation and reward de-

livery for 6 days on a freely moving wheel. A tube for reward delivery was placed in front of themousewith an IR LED and photo-

diode positioned to detect licks. Reward consisted of water sweetened with saccharin (10mM), delivered every 23-85 seconds

via an audible solenoid, for a total of 218 trials. We aligned the simultaneously-recorded responses of neurons in a single ses-

sion to the time of the solenoid click that cued reward delivery.

d Medina: Mice were trained using a classical conditioning protocol in which the presence of an LED (conditioned stimulus) pre-

dicted the occurrence of a puff to the cornea (unconditioned stimulus) 220 ms later. The exact experimental protocol has been

described previously.65 Animals had been extensively conditioned and were generating reliable conditioned responses before

neural recordings took place.We aligned the simultaneously-recorded responses of many neurons from a single session on the

onset of the conditioned stimulus.

d Lisberger: We recorded neural data during discrete trials of smooth-pursuit target motion.108 Animals were seated in

front of the CRT monitor and trained to pursue the smooth movement of a black dot as it moved in one of eight directions

at a constant velocity. Here, we included only trials in which the target moved in the horizontal direction towards the side

of the cerebellum where we were performing neural recordings and where the monkey successfully tracked the target and

maintained fixation after the termination of target motion. Data were aligned to the onset of a 650 ms duration target

motion.

Neural data trajectory analysis

We included in our analysis each recorded neuron that our classifier was able to label with a confidence ratio > 2, analyzing only a

single session for each of the 3 behaviors in mice and a pseudo-population recorded across n=163 sessions for the behavior in mon-

keys, similar to previous analyses of population dynamics.70,74 We converted spike trains into firing rates and temporally smoothed

them using causal kernels that were appropriate for each behavioral paradigm (10–50ms smoothing time constants). The differences

in time-scales of the behavioral tasks (e.g., approximately 200ms during reward conditioning but longer than 1,000ms during smooth

pursuit) necessitated the use of task-specific smoothing methods. We note, however, that our general conclusions are robust to a

large range of smoothing time constants. Following smoothing, we normalized the firing of each neuron by the standard deviation of

its activity during a 100 ms pre-trial baseline period, averaged the responses across discrete trials to form peri-stimulus time histo-

grams for each neuron and subtracted the mean firing rate during the pre-trial baseline period. Changes in the normalized firing rate

are therefore expressed relative to their baseline activity in units of baseline firing rate standard deviation. The PSTHs in Figure 7B are

averaged across all instances of each cell type and the heat maps in Figure 7C show the individual trial-averaged PSTHs for each cell

type in the population.

A more sophisticated approach for studying the temporal structure of large-scale population responses relies on dimensionality

reduction techniques to understand consistent temporal signatures that exist across neurons in a population.70–72,74,80 To answer

whether low-dimensional representations of population activity from specific cell types were different from those of a cell-type

agnostic population, we derived an analysis pipeline where we could compare the neural trajectories from different sized populations

in a common space. In each case, we began by constructing a matrix Xwith dimensions NxTwhere each row contained the baseline

normalized and smoothed peri-stimulus time histogram with T time points for one of N neurons. To apply principal component anal-

ysis, we centered the firing rates in each row of X. As principal component analysis identifies the dimensions in order of variance,

neurons that show dramatic differences relative to their baseline firing rate will likely drive a majority of the variance. To mitigate

both the over-representation of highly responsive neurons in the absence of normalization as well as the over-representation of

non-responsive neurons in the case of z-scoring, we took advantage of a previously described approach for firing rate preprocessing

using a ‘‘soft’’ normalization procedure.70 We reduced the influence of highly active neurons, those with modulation that exceeded

their baseline standard deviation by more than 2x, by ensuring that their range was approximately unity. The range of firing rate

changes for non-responsive neurons, in contrast, was reduced to values near zero and, therefore, did not contribute meaningfully

to the largest principal components.
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Wedecomposed our datamatrix XT = USVT using singular value decomposition. Here,U represents the left singular vectors ofXT ,

consisting of an orthonormal set of temporal representations of length T (principal axes across time) ordered by their variance. Typi-

cally, principal component analysis projects the data matrix X into a lower dimensional subspace by selecting the first C axes of U,

weighted by their associated singular values contained in the diagonal elements of S, namely Uð1:CÞSð1:CÞ. While each directional axis

defined in U has unit magnitude, the resultant projection is scaled by the singular values whose values are related to the standard

deviation, s, of the discovered principal axes and thus have a dependence on the population size,N. To account for the dependence

of the projection into principal component space on the population size, we transformed the singular value matrix as bS = kS= trðSÞ.
In this equation, k is an arbitrary constant (chosen to be 10

ffiffiffiffi
T

p
) and tr denotes the trace operator. We can now project X into principal

component space in a manner that retains the relative scaling between the projected axes but remains agnostic to the underlying

population size using UbS. Given this formulation, we could compute the projection of each population into their respective principal

component spaces even though the population sizes differed. Once we obtained our projection UbS, we subtracted off the mean of

the activity in each principal component during the pre-trial baseline period. Therefore, all trajectories are guaranteed to start near the

origin.

We next asked whether the low-dimensional geometry of each cell-type population demonstrated comparable trajectories to the

label-agnostic population. To account for the fact that the sign of each principal component projection is arbitrary, we optimally

rotated and reflected the low-dimensional trajectory representations of each cell-type population to align its trajectory to the low-

dimensional projection of the full population, agnostic to cell-type. We did so by solving the orthogonal Procrustes problem, resulting

in an orthogonal matrix R that reflected and rotated cell-type population trajectories about the origin to maximally agree with the cell-

type agnostic trajectory, thereby finding the R that minimized kUFull
dSFull � RUPartial

dSPartialk. After computing R for each population,

we analyzed the Euclidean distance between the optimally rotated cell-type trajectories and the cell-type agnostic population trajec-

tories in the same low-dimensional space.

Because the population sizes were unequal across cell-types, we used permutation testing to assess statistical significance of the

distance between optimally rotated and reflected trajectories of each cell type and to the cell-type agnostic trajectories derived from

the overall population. We tested the null hypothesis that random selection of equal numbers of cells for each of the compared tra-

jectories would show a similar distribution of Euclidean distances. We performed 1,000 permutations where we sampled neurons

from both compared populations, optimally rotated and reflected these permuted trajectories into the same space, and then derived

the null distribution of distances. From the empirically derived null distribution we could directly assay the significance of distances

between two population trajectories.

We also tested the performance of the trajectory analysis when we introduced random errors in the cell-type labels provided by the

classifier. For each given fraction of cells relabeled, we performed 1,000 replicates of randomly selected sets of cells to receive a new

cell-type label from labels corresponding to either a Purkinje cell simple spike, Golgi cell, mossy fiber, or a molecular layer inter-

neuron, with equal probability. We then selected all neurons with a given cell-type label, performed dimensionality reduction as

described above, and computed the distance between the optimally rotated and reflected low-dimensional trajectory and the trajec-

tory agnostic to cell type labels. We used bootstrapped statistics to derive the 95% confidence intervals as a function of the fraction

of cells that were randomly assigned a new cell-type label.
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Supplemental figures

Figure S1. Analysis pipeline for preprocessing of neural waveforms, related to Figure 2

As we compared recordings across labs and understood how the idiosyncrasies of different analysis pipelines work, we learned that we needed to harmonize

data across preparations and to ensure that the output of our pipeline provided the best possible estimate of the actual waveform. Careful preprocessing of the

waveform reduces the variation in waveformwithin each cell type and likely improves the performance of the classifier at distinguishing cell types. We detail those

procedures—consistent filtering and drift-shift matching—here.

(A) Simple-spike waveforms from 44 ground-truth Purkinje cells, identified through their complex-spike-induced pause in simple-spike firing. Traces on the left

display normalized voltage-versus-time traces from the primary channel of Neuropixels recordings with the hardware filter disabled. Traces on the right depict the

same waveforms after application of a software filter that is equivalent to the onboard hardware filter on Neuropixels probes (single-pole 300 Hz high-pass

Butterworth). The black arrow points out the main difference in waveform shapes before versus after filtering. The procedure to harmonize waveforms across

datasets by applying a software version of the hardware filter was critical.

(B) Representation of power in the low-frequency band averaged across the primary channels for raw (red) and filtered (black) waveforms from (A), verifying the

impact of the onboard hardware filter.

(C) Comparison of waveforms for three cerebellar neurons, showing how the standard tools used with Neuropixels probes can cause aberrations in the

waveforms: top row shows the best reconstruction of waveforms of 3 units, using the analysis pipeline developed in our study; middle row shows the templates

created by Kilosort, which can be quite distorted relative to the best waveform identified by our process; and bottom row shows the results of zero phase

component analysis (ZCA) whitening by Kilosort, a process that is relevant to performing spike-sorting but that can badly distort the waveform because of the role

of activity on neighboring channels in ZCAwhitening. The distortions of somewaveforms by the standard analysis pipeline underscore the improvements we have

made to provide classifier inputs of the highest quality.

(D) Step 1 of the preprocessing pipeline for high-quality neural waveform identification using the drift-shift-matching algorithm, Z-drift matching: identification of

the primary channel through the largest peak-to-peak amplitude (red arrow).

(E) Step 2, X-Y drift-matching: sub-selection of neural waveforms on the identified primary channel, with the top plot showing the distribution of peak-to-peak

amplitudes and the bottom plot depicting the cumulative probability distribution. A subset of N (user-configurable) action potential waveforms with peak-to-peak

amplitudes below the 95th percentile is selected (blue-shaded region), eliminating spikes in the 95th to 100th percentiles to mitigate potential large amplitude

artifacts.

(F) Step 3, shift-matching: consecutive/iterative alignment of small batches to waveforms via the peak in cross-correlation to an alignment template, computed as

the mean of the largest peak-to-peak waveforms following amplitude selection.

(G) Final averages of the aligned waveforms on the primary channel. The black curve depicts the waveform template following the complete drift-shift pipeline,

while the red waveform shows the original mean waveform reproduced from (D). The difference between the red and black waveforms shows the impact of our

analysis pipeline.
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Figure S2. Quantitative assessment of synaptic blockade, related to Figure 3

For each recording that yielded at least one ground-truth neuron, we analyzed all recorded neurons with three quantitative criteria used to establish the region of

confirmed synaptic blockade. Criteria were the effect of synaptic blockade on the (i) size of the response to optogenetic stimulation (B), (ii) the size of the negative

afterwave on mossy fiber waveforms (C), and (iii) the coefficient of variation of firing rate (D). A recording was considered to potentially contain ground-truth

neurons if at least two out of three signs of effective synaptic blockade were found anywhere along the Neuropixels probe. The analysis confirmed that every

neuron in the ground-truth library was at or above the deepest recording site with confirmed synaptic blockade (E and F). We conclude that all neurons in our

ground-truth library were likely activated directly by optogenetic stimulation and not indirectly through synaptic inputs.

(A) Distribution of optogenetic response latencies. Blue and gray bars indicate latencies for neurons in the ground-truth library versus neurons that were judged to

be activated synaptically because they lost their responses to optogenetic stimulation during synaptic blockade.

(B) Top panel shows response of an example neuron to illustrate howwe quantified the effect of synaptic blockade on responses to optogenetic stimulation. Black

and orange traces show data in the control phase versus during blockade, blue shading shows the time of optogenetic stimulation, and gray shading shows the

interval used for measurement of the area under the curve. ‘‘Opto-response ratio’’ is defined as the area under the curve in the measurement interval after

blockade divided by that before blockade. Horizontal dashed line shows the statistically determined baseline for optogenetic responses. Bottom panel shows

responses of multiple neurons along a single recording with a Neuropixels probe and illustrates many neurons that lost their responses to optogenetic stimulation

in the region of confirmed synaptic blockade. The horizontal dashed line demarks the line of the deepest evidence of synaptic blockade, here placed at the

deepest level where we recorded a neuron that lost its response to optogenetic stimulation during the blockade phase. We defined an opto-response ratio of 0.2

or smaller as evidence for synaptic blockade.

(C) Top panel shows an example mossy fiber waveform to illustrate how we quantified the effect of synaptic blockade on the negative afterwave. Black and

orange traces show data in the control phase versus during blockade, and gray shading shows the interval used for quantification of the negative afterwave.

‘‘NAW ratio’’ is defined as the area under the negative afterwave in the measurement interval after blockade divided by that before blockade, in the interval from

1.7 to 2.2 ms after waveform onset. Bottom panel shows effect of synaptic blockade on the negative afterwaves of multiple mossy fiber waveforms above or

below the horizontal dashed line that indicates the deepest site of confirmed synaptic blockade. We defined an NAW ratio of 0.5 or smaller as evidence for

synaptic blockade.

(D) Top panel shows how synaptic blockade altered the autocorrelogram and the coefficient of variation of an example neuron. Black and orange autocorre-

lograms show results in the control phase versus during blockade. ‘‘CV ratio’’ is defined as the CV after blockade divided by that before blockade. Bottom panel

(legend continued on next page)
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shows effect of synaptic blockade on the autocorrelograms ofmultiple neurons recorded above or below the horizontal dashed line that indicates the deepest site

of confirmed synaptic blockade. The neurons recorded above the dashed line showed regularization of firing rate after synaptic blockade, while the auto-

correlograms of those recorded below the dashed line were almost unchanged.29 We define a CV ratio of 0.7 or smaller as evidence for synaptic blockade.

(E) The graph plots the depth of the deepest ground-truth neuron and the deepest evidence of synaptic blockade for all 24 recordings that yielded at least one

ground-truth neuron. Each line corresponds to an individual recording. The negative or zero slopes of all the lines indicate that all ground-truth neurons were

within the region of quantitatively verified synaptic blockade.

(F) The scatterplot shows the depth of each neuron that satisfied one of the criteria for effective synaptic blockade for each of the 24 recordings that yielded at

least one ground-truth neuron. Cyan stars indicate ground-truth neurons, red symbols indicate mossy fibers where synaptic blockade caused at least a 50%

reduction in the amplitude of the negative afterwave, green symbols indicate neurons where synaptic blockade caused at least a 30% reduction in the coefficient

of variation, and purple symbols indicate neurons where synaptic blockade caused at least an 80% reduction in the size of the response to optogenetic stim-

ulation. All depths have been plotted relative to the deepest ground-truth neuron recorded in the experiment. In all cases, at least one neuron satisfied the criteria

for synaptic blockade at the depth of, or deeper than, the deepest ground-truth neuron.
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(legend on next page)
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Figure S3. Quantification of potential off-target opsin expression in the mouse lines used in our study and strategy to mitigate it when

present, related to Figure 3

Off-target labeling is an important attribute of some of the mouse lines we used. Therefore, we could not simply assume that an optogenetically activated neuron

was of the cell type that a line has previously been described to label. This figure describes a strategy to manage off-target labeling based on (i) careful

assessment of histology for all the mouse lines we used and (ii) identification of the layer of the recordings by Phyllum.

The problem of off-target expression was most pronounced in the GlyT2-Cre line used previously to image activity in Golgi cells.33 (C) Shows that the GlyT2-Cre

line has substantial off-target expression in molecular layer interneurons and, very occasionally, Purkinje cells; the relative density of molecular layer interneurons

was higher than that of Golgi cells (79 versus 20%). Accordingly, we recorded neurons directly responsive to optogenetic stimulation in both the granule cell layer

and the molecular layer (PSTH’s at the bottom of A). We used Phyllum to identify the recording layers and labeled units in the granule cell layer that were directly

activated by optogenetic stimulation as Golgi cells and labeled activated units in the molecular layer as molecular layer interneurons.

The remaining histology in this figure shows that other mouse lines also showed some, but less pronounced, off-target expression. For example, the Math1-Cre

line used to label granule cells was generally specific but exhibited rare labeling of Purkinje cells. The c-kit-Cre line also labeled a small number of Golgi cells,32

and the Nos1-Cre line exhibited occasional labeling of non-neuronal cells in addition to molecular layer interneurons. By contrast, other lines we used were

cleaner, such as the Thy1-ChR2-YFP line 18 and Pcp2-Cre lines used to label mossy fibers and Purkinje cells, respectively. Crucially, we did not observe multiple

labeled cell types within a single cerebellar layer in any of our lines. Thus, the combination of an identified layer with direct optogenetic activation allowed us to

disambiguate cell type for all experiments.

(A) Example optotagging experiment in the GlyT2-Cre line showing raw voltage traces across channels of a Neuropixels probe. Magenta, blue, and green

waveforms on the right show the spatial footprint of neurons in the molecular layer (MoL), Purkinje cell layer (PCL), and granule cell layer (GCL). Histograms below

the voltage traces show that both the MoL and GCL layer neurons were activated by optogenetic stimulation (cyan shading).

(B) Histology showing the localization of the ChR2-YFP fusion protein in our mouse lines. The top row shows that off-target expression was minimal in the Thy1-

ChR2 line used to identify mossy fibers and the c-kit-Cre line used in one laboratory to identify molecular layer interneurons. The second row shows substantial

off-target expression in molecular layer interneurons in the GlyT2-Cre line used in one laboratory to identify Golgi cells and non-neuronal expression along with

dense labeling in the MoL of the Nos1 line that we used to identify molecular layer interneurons. The third row shows very little off-target expression in the Math1-

Cre line used to attempt to identify granule cells and the L7-Cre line that we used to identify some ground-truth Purkinje cells.

(C) Cerebellar sections fromCre lines crossed to a tdTomato reporter mouse immunostained to label Cre-positive cells (red) and parvalbumin (PV; cyan), amarker

for Purkinje cells andmolecular layer interneurons. Left panel demonstrates that the GlyT2-Cre line drives expression in both Golgi cells in the GCL andmolecular

layer interneurons in theMoL. Red arrows denote double-labeled cells. Remaining panels show representative sections for the Nos1-Cre, Pcp2-Cre, andMath1-

Cre lines.

(D) The table outlines how we used layer information to disambiguate cell types despite off-target expression in certain Cre lines. We used layer information as a

sanity check even for Cre lines that had minimal off-target expression, such as the c-kit-Cre line.
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Figure S4. Demonstration from in vitro recordings that waveform is informative about cell type, related to Figure 4

We were provoked, by the impression from Figure 4D that waveform from extracellular recordings is a useful indicator of cell type, to perform one more set of

experiments to test the informativeness of waveform in a different kind of ground-truth data. We performed cell-attached patch recordings in slices of the mouse

cerebellum at 37�C. We identified mossy fibers using optogenetics with the Thy1-ChR2 line 18, and we identified other cell types by visualizing them in the

microscope during recording. The currents associated with action potentials were both very uniform within cell types and clearly different between cell types. It is

not surprising that the waveforms are more uniform in the in vitro recordings compared to the extracellular fields recorded in vivowith multi-contact probes. Many

uncontrolled factors affect the exact waveform recorded extracellularly. Also, the difference in recording technique and preparation precludes comparison of the

waveforms recorded in vitro with those in Figure 4D, but the principle that different cell types have distinguishable waveforms remains. We verified the infor-

mativeness of waveform from the in vitro data by creating a deep learning classifier and validating its performance with a ‘‘leave-one-out’’ strategy. The overall

accuracy of the classifier was 78% compared with the 20% expected from random performance. We conclude that there are mechanistic physiological reasons

whywe can use extracellular waveform as onemajor feature to classify cell types. At the same time, (F) shows the poor performance of the classifier trained on the

in vitro waveforms at the identification of cell types from waveforms in the in vivo ground-truth neurons. We conclude that we must use the waveforms from

extracellular recordings in vivo to create a classifier for cell type from extracellular recordings in vivo.

(A) Slice recording schematic.

(B) Schematic of optogenetic stimulation of mossy fibers during cell-attached patch-clamp recording. (C) Superimposed waveforms from identified cell types,

with different colors showing different cell types: PCSS, Purkinje cell simple spikes; MLI, molecular layer interneuron; GoC, Golgi cell; MF, mossy fiber.

(D) Schematic of a machine learning classifier that we trained to predict cell type based on waveform.

(E) Confusionmatrix showing the performance of the classifier on left-out test cell types. The numbers in the entries of thematrix indicate the percentage of cells of

a given ground-truth type (y axis) as a function of the prediction of the classifier on the x axis. The diagonal has the highest percentages,meaning that the classifier

was accurate: the overall accuracy of the classifier was 78% compared with the 20% expected from random performance.

(F) Confusion matrix showing the poor performance of the classifier trained on the in vitro waveforms in identifying the cell types for the waveforms from our

ground-truth library, confirming that the waveforms from in vitro data cannot be used for cell-type identification from in vivo extracellular recordings with multi-

contact probes.
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Figure S5. Regularization approaches included in the classifier strategy to mitigate overfitting, related to Figure 5

Wewere aware that deep learning classifiers are prone to overfitting, particularly in cases where the size of the training dataset is small.132 Overfitting would result

in excellent performance for classification of the ground-truth dataset but poor generalization to novel datasets, including the expert-labeled datasets tested later

in the paper. Here, we outline several steps that were designed to avoid overfitting and provide some evidence that those steps were successful.

(A) Illustration of the overfitting problem. The two sets of symbols show the distribution of features that might classify two different cell types. The light blue,

orange, and magenta curves show the classification that might result from overfitting, underfitting, and proper classification.

(B) Schematic showing the regularization strategies we used to mitigate overfitting, including dimension reduction by input variational autoencoders pretrained in

an unlabeled dataset, data augmentation, drop out, early stopping, an ensemble of models, and leave-one-out cross-validation (details in STAR Methods). We

also tested classifier performance on independent (‘‘novel’’) expert-identified datasets, as documented in Figure 6.

(C) Two variational autoencoders, one for the waveform and a separate convolutional variational autoencoder for 3D-ACG, were designed to reduce the

dimensionality of their respective inputs to a 10-element vector (colored circles) that could be subsequently supplied as inputs to the final classifier (see Fig-

ure 5A). Each variational autoencoder is an artificial neural network that reduces the input dimensionality by placing an information bottleneck (‘‘latent space’’)

between an encoding and decoding network. We trained the weights in the autoencoders with gradient descent (see STAR Methods) using either the waveform

(left) or 3D-ACG (right) derived from a set of unlabeled cerebellar neurons. Training minimized the difference between the supplied input and the encoded-

decoded output.

(D) The dimensionality reduction performed by the two variational autoencoders captures the diversity of waveform and 3D-ACG statistics present in our ground-

truth and expert-labeled datasets (see STAR Methods). Here, we illustrate the diversity of waveforms and 3D-ACGs captured by the autoencoders trained on

mouse neurons independent from the ground-truth dataset. Thematrices of heatmaps show howwaveforms and 3D-ACGs are represented in the latent space of

the autoencoders. Most of the low-dimensional representations inside the waveform variational autoencoder were occupied by variations of somatic waveforms,

which are indeed the most common in the dataset. However, all other typical spike shapes were also represented, including dendritic waveforms, both bi-phasic

and tri-phasic axonal waveforms, and waveforms featuring postsynaptic depolarizations. The same was true for the reconstructed 3D-ACGs, which captured

activity profiles corresponding to bursting, oscillations, and both high and low firing rates. Note that some non-biological-looking traces in the figure should not be

interpreted as a failure of the model but rather as a by-product of the interpolation process used to visualize the reconstructions.

(E) Post hoc effect of systematically peeling off regularization precautions one by one. As evidence that the regularization procedures mitigated overfitting, the

graph shows that peeling them off one by one increases overfitting. It shows a progressive increase in performance on the training set and a decrease on the

validation units, quantified using 10 runs of 5-fold cross-validation. Here, classifier performance is quantified by the ‘‘F1-score,’’ defined as the harmonic mean of

the precision and recall of the classifier.
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Figure S6. Classifier confusion without layer information as an input and an explanation for the confusion based on the existence of two

groups of molecular layer interneurons with different waveform shapes, related to Figure 5

The classifier performs better when we include layer information as an input, especially for molecular layer interneurons and Golgi cells (A and B). When we

investigated further, we realized that the waveforms of the full sample of molecular layer interneurons in the ground-truth library suggested a bimodal distribution.

Here, we characterize the two groups quantitatively (C–F) and show that the classifier can distinguish between the two groups of molecular layer interneurons.

Because one group of molecular layer interneurons (MLIB) has a waveform very similar to Golgi cells, which are located in the granule cell layer, the classifier

performs better with versus without layer information as an input (G and H). The two distinct waveshapes in molecular layer interneurons may align with dif-

ferences in anatomy or function, but the work of others shows that waveform alone does not discriminate between the two known types of molecular layer

interneurons.133

(A) Confusion matrix showing the cross-validated performance of the classifier when layer was not provided as input to the classifier. Here, the value in each entry

of thematrix shows the percentage of ground-truth cell types on the y axis that were predicted by the classifier to be the cell type on the x axis. Note the confusion

specifically between molecular layer interneurons and Golgi cells without layer information.

(B) Same as (A), but showing the improvement when we included layer as an input to the classifier.

(C) Pairwise distance matrix between normalized waveforms for the entire sample of 27 molecular layer interneurons in the ground-truth library. Lines on the left

and top show dendrograms obtained via hierarchical clustering.

(D) Silhouette score as a function of molecular layer interneuron clusters. A high score indicates that a sample matches appropriately to its own cluster and is

separated from neighboring clusters. Maximizing the silhouette score provides an unbiased estimate of the number of underlying clusters. Here, the assumption

of two clusters maximizes the silhouette score. The maximum silhouette score is +1, and the minimum silhouette score is �1.

(E) Separation of the waveforms of molecular layer interneurons into group A (n = 17) and group B (n = 10), shown in different colors, based on the pairwise

distance matrix and dendrograms in (C).

(F) Comparison of peak-to-trough ratios for the two clusters of molecular layer interneurons.

(G) Confusion matrix showing the cross-validated performance of the classifier with separate labels for group A and group B molecular layer interneurons when

the layer was not provided as input to the classifier. Here, the value in each entry of the matrix shows the percentage of ground-truth cell types on the y axis that

were predicted by the classifier to be the cell type on the x axis. Note that without layer information, the classifier specifically confusedmolecular layer interneuron

group B neurons and Golgi cells. (H) Same as (G), but with layer information.
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Figure S7. Similarity of waveforms and resting discharge statistics of different cell types across the ground-truth library and the expert-

labeled data from mouse and monkey, related to Figure 6

Here, we included only the neurons that were classified with confidence greater than 2.

(A) Waveforms of different cell types across laboratories and species. In the first row, waveforms are divided according to ground-truth cell type in mice. In the

second and third rows, cell types are divided according to classifier predictions of cell type for non-ground-truth neurons recorded in mice and monkeys. Recall

that all waveforms were flipped so that the largest deflection was negative. Cell-type abbreviations are PCSS, Purkinje cell simple spikes; PCCS, Purkinje cell

complex spikes; MLIs, molecular layer interneurons; GoCs, Golgi cells; MFs, mossy fibers.

(B) Same as (A), except showing 2D autocorrelograms. Note that the spike counts in the autocorrelograms have been normalized by thewidth of the bin so that the

y axis is in spikes/s.

(C) Example three-dimensional autocorrelograms (3D-ACGs) for 5 cell types in the ground-truth library from mice and from non-ground-truth recordings in mice

andmonkeys. For the non-ground-truth recordings, we selected exampleswhere the prediction of the classifier agreedwith the experts’ identification of cell type.
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